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INVITED SPEAKERS

Optimization problems with oscillating controls

Bronis law Jakubczyk, Warsaw, Poland

We will discuss optimal control problems related to in�nitesimally optimal
path following. This leads to nilpotent approximations and optimal problems
on nilpotent Lie groups. Based on a common work with J.-P. Gauthier and
V. Zakalyukin, we will show how harmonic oscillatory controls solve the problem
for 1-step non-holonomic systems. We will give an explicit formula for a measure
of complexity of the problem, called the entropy. For more general systems one
should solve certain open optimization problems involving Lie polynomials.

Stochastic Controllability of Fractional Linear Systems

Jerzy Klamka, Gliwice, Poland

Controllability plays an important role both in deterministic and stochastic
control theory. In the literature there are many di�erent de�nitions of control-
lability, both for linear and nonlinear dynamical systems, which strongly depend
on class of dynamical control systems and the set of admissible controls.

However, it should be stressed, that the most literature in this direction
has been mainly concerned with deterministic controllability problems for �nite-
dimensional linear dynamical systems with standard derivative in the di�erential
state equation.

Controllability concepts for stochastic control systems have been recently
discussed only in a rather few number of publications.

In the present paper we shall study stochastic controllability problems for
fractional linear dynamical systems, which are natural generalizations of control-
lability concepts well known in the theory of in�nite dimensional control systems.
It will be proved that under suitable assumptions controllability of a determinis-
tic fractional linear associated dynamical system is equivalent to stochastic exact
controllability and stochastic approximate controllability of the original fractional
linear stochastic dynamical system. This is a generalization to fractional case
some previous results concerning stochastic controllability of linear dynamical
systems.

The paper is organized as follows: section 2 contains mathematical model
of linear, fractional stationary stochastic dynamical system. In section 3 using
results and methods taken directly from deterministic controllability problems,
necessary and su�cient conditions for exact and approximate stochastic con-
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trollability are formulated and proved. Finally, section 4 contains concluding
remarks.

Cell nuclei detection for computerized cancer diagnosis

based on stochastic geometry and deep learning

Jozef Korbicz, Zielona Gora, Poland
Marek Kowal, Zielona Gora, Poland

A modern cancer diagnostic is based heavily on cytological tests. Unfortu-
nately, experienced pathologists need a lot of time to inspect cell nuclei coming
from the tissue sample. Such a diagnosis can be facilitated and speeded up by
using automatic image segmentation and analysis methods. But, we have to
take into account the fact that a cytological image is a hard problem for com-
puter vision because tissue samples are composed of complex cellular structures.
Classical segmentation methods such as thresholding, active contours or water-
shed transform are e�ective only for simple cases where nuclei are well isolated
from each other. In case of cytological material, this requirement is very rarely
ful�lled. To tackle this problem a hybrid approach based on convolutional neural
network (CNN) and stochastic geometry is proposed for automated detection of
nuclei. We can observe that more and more nuclei segmentation and detection
approaches are based on CNN. The main advantage of this approach is that
CNN learns from training data a hierarchy of �lters to extract invariant features
to segment images. This approach has proven to be more accurate for semantic
segmentation than methods based on features engineered by hand. However,
cytological images are speci�c in this sense that nuclei usually are clumped, and
therefore occlusions are very frequent. Consequently, we typically need to detect
nuclei which are only partially visible. To overcome this problem, results of se-
mantic segmentation are post-processed with the help of stochastic geometry to
extract nuclei from clusters which CNN missed to detect. Nuclei distribution is
modeled by the stochastic process, and then Besag's iterated conditional modes
approach is applied to �nd the con�guration of nuclei models that �t the input
image best. The method is tuned to detect cell nuclei that are partially occluded
or create dense clusters. To test the e�ectiveness of the proposed method, it was
applied to detect nuclei in breast cancer cytological images. Detection accuracy
was determined concerning reference results obtained by manual segmentation
of cell nuclei. The proposed approach has led to better results than the marker-
controlled watershed both in the number of correctly detected nuclei and in the
number of false detections.
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On exact controllability and complete stabilizability of

linear systems in Hilbert spaces

Rabah Rabah, Nantes, France

We consider linear systems in the general form

ẋ = Ax+ Bu, (1)

where the state x(t) and the control u(t) take values in Hilbert spaces X and
U . A is a linear operator, in�nitesimal generator of a C0-semigroup S(t), B is
linear bounded operator. By exact (null) controllability we mean controllability
from any state to any state (or zero state). By complete stabilizability we
mean exponential stabilizability with arbitrary decay rate or, sometimes pole
assignment, by linear state feedback u = Fx.

It is well known (cf. for example [2]) that in an �nite dimensional setting
exact controllability (said complete controllability) is a necessary and su�cient
condition for complete stabilizability or more precisely arbitrary pole assignment.
The situation is more complicated in in�nite dimensional spaces.

We recall some classical results concerning the relation between exact con-
trollability and complete stabilizability.

The �rst important result in this context was given by Slemrod [1]: if S(t) is
a group, exact controllability implies complete stabilizability. The converse, for
a group, was proved by Zabczyk [3]. The result was generalized and precized
by several authors for the case of a bounded operator A, for the case of a
semigroup S(t) (not a group) and for some classes of systems, governed by
partial di�erential equations or functional-di�erential equations (with delays).

We discuss more precisely the relations between exact null controllability and
complete stabilizability. For the system (1), exact null controllability implies
complete stabilizability, but the converse is not true. We give more recent results
on functional-di�erential systems of neutral type, which may be represented in
the form of system (1), and described by the equation:

ż(t) = A−1ż(t− 1) +

∫ 0

−1

A2(θ)ż(t+ θ) dθ +

∫ 0

−1

A3(θ)z(t+ θ) dθ +Bu.

[1] M. Slemrod. A note on complete controllability and stabilizability for linear control systems in Hilbert
space.// SIAM J. Control. � 1974. � 12(3). � pp. 500 - 508.

[2] W. M. Wonham. Linear multivariable control: A geometric approach, Springer, New York, 3d ed., 1985.

[3] J. Zabczyk. Complete stabilizability implies exact controllability.// Seminarul Ecuati Functionale. � 1976.
� 38. � pp. 1 - 7.
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A�ne varieties in the tangent bundle

Michail Zhitomirskii, Technion, Israel

An a�ne variety in the tangent bundle is a subset of the tangent bundle whose
intersection with any tangent space is an a�ne (in particular vector) subspace,
not necessarily of constant dimension, which can be locally described either by
vector �elds or by di�erential forms. The local classi�cation of a�ne varieties
is a big tuple of directions of research in local di�erential geometry, geometric
control theory, dynamical systems, and singularity theory. In the talk, the main
direction of research, tools, and results will be conceptually characterized.
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SHORT COMMUNICATIONS

The KdV equation as a Hamiltonian system.

Symplectic form in terms of left scattering data

Kyrylo Andreiev, Kharkiv, Ukraine

For the Korteweg-de Vries equation

qt(x, t)− 6q(x, t)qx(x, t) + qxxx(x, t) = 0

with steplike initial pro�le q(x, 0) = q(x), which is of the Schwartz type in the
following meaning:∫

R+

xm(|q(−x)− c2|+ |q(x)|)dx+

∫
R
|x|m|q(s)(x)|dx <∞, ∀m, s ≥ 1,

we propose a representation of the sympletic form in terms of the left scat-
tering data. Our work generalizes the well known result of V.E. Faddeev and
L.D. Zakharov [1].

Research supported by the State Fund For Fundamental Research (project N
Φ83/82 - 2018).

[1] V.E. Zakharov, L.D. Faddeev The Korteweg-de Vries equation � completely integrable Hamiltonian
system // Functional Analysis and Its Applications, 5:4 (1971), 18�27.

One problem of a control system design in the class C1

Daria Andreieva, Kharkiv, Ukraine
Svetlana Ignatovich, Kharkiv, Ukraine

In the paper [1] a method for constructing a controllable system was proposed
for the class of real-analytic vector �elds. Let ẋ = f(x) be a system of di�erential
equations, where x ∈ Rn, f : Rn → Rn, n > 1. The problem is to �nd a vector
�eld g(x) such that the system

ẋ = f(x) + g(x)u (1)

is completely controllable. The following theorem was proved in [1]:

Theorem 1. Let a system ẋ = f(x) be given. A vector �eld g(x), for which
the system (1) is controllable, exists if and only if f 6≡ 0.

The idea [1] of constructing a controllable system in the theorem is to
straighten the given vector �eld f(x), that is, to obtain f = [0, . . . , 1]T and,
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changing variables, to obtain a linear system that we already know how to make
controllable. By performing the inverse change of variables, we obtain a control-
lable system in the initial coordinates.

In the report, this problem is considered for �nitely di�erentiable vector �elds,
in particular, for vector �elds of the class C1. In this case a system design problem
is related to linearizability problems studied in the paper [2]. As a result, we
obtain the following theorem:

Theorem 2. Let a system of di�erential equations

ẋ = f(x) + g(x)u

be given, where the vector �eld g(x) is constructed according to the method
described above. If the vector �eld f(x) is of the class C2, then the vector �eld
g(x) is of the class C1.

[1] Kawano, Y. Any dynamical system is fully accessible through one single actuator, and related problems
/ Y. Kawano, �U. Kotta, C. H. Moog // International Journal of Robust and Nonlinear Control. � 2016.
� Vol. 26, no. 8. � P. 1748-1754.

[2] Sklyar, G.M. On the extension of the Korobov's class of linearizable triangular systems by nonlinear
control systems of the class C1 / G.M. Sklyar, K.V. Sklyar, S.Yu. Ignatovich // Systems and Control
Letters. � 2005. � Vol. 54. � P. 1097�1108.

One method of mapping nonlinear systems to linear

Nataliia Averianova, Kharkiv, Ukraine
Aleksandr Svetlichny, Kharkiv, Ukraine

We consider the problems of searching for admissible control, such that the
given initial point passes to a given �nite value at a given time due to a system
with a nonlinear right-hand side.

We study the possibility of replacing variables, as proposed for triangular
systems, to systems that are not triangular. We consider several cases: systems
which are non-linear with respect to the control, two-dimensional systems in
which the �rst equation does not depend on the second coordinate, and systems
in which the right-hand side depends only on the control. Various methods were
used for constructing the control. For the considered problems, we found the
control of two types: in the form of piecewise constant functions and in the form
of polynomials.

We considered several examples and found several controls by di�erent meth-
ods.

Also, we consider a three-dimensional system, which was studied in connection
with the time-optimal problem in the paper by S. Yu. Ignatovich [3]. The applied
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methods are based on Korobov's theory of triangular systems (the transformation
of nonlinear systems into linear ones).

[1] Korobov V. I. The method of controllability function (Russian), R&C Dynamics, M.-Izhevsk, 2007, 576 p.

[2] Korobov V. I., Smortsova T. I. Controllability and stabilization (Ukrainian), Kharkiv: V. N. Karazin
Kharkiv National University, 2017, 78 p.

[3] Ignatovich S. Yu. Explicit solution of the time-optimal control problem for one nonlinear three-dimensional
system // Visnyk of V.N.Karazin Kharkiv National University, Ser. Mathematics, Applied Mathematics
and Mechanics, 2016, V. 83, P. 21-46.

Exact null controllability of time-delay systems as

trigonometric moment problem

Pavel Barkhayev, Kharkiv, Ukraine
Rabah Rabah, Nantes, France
Grigory Sklyar, Szczecin, Poland

We analyze the relation between notions of exact null controllability and
spectral controllability for a quite general class of linear time-delay systems of
retarded type with distributed terms. One of the �rst results was obtained in [2]
where two-dimensional systems of the form

ẋ = A1x(t− h) + A0x(t) + bu(t) (1)

were considered. The authors proved that exact null controllability is equivalent
to spectral controllability for such systems. In 1979 V. Marchenko [3] conjectured
that this equivalence holds for much more general class of retarded systems. In
1984 Colonius [1] showed the equivalence property for systems (1) of arbitrary
dimensions. His proof was based on the fact that spectrum controllability is
equivalent to solvability of �nite spectrum assignment problem. Later in [4] an
explicit algebraic algorithm of computing a control function which steers any
given initial function to the equilibrium position in �nite time was given. This
allowed to prove that spectral controllability implies null controllability for quite
wide class of systems.

In this work we consider a more broad class of systems given by

ż(t) = A1z(t− 1) +

∫ 0

−1

[A2(θ)ż(t+ θ) + A3(θ)z(t+ θ)] dθ +Bu(t), (2)

assuming that rank(A1, B) = n and suppAi(θ) ⊂ [−1 + ε, 0] for some ε > 0.
We study the problem of exact null controllability as an in�nite vector mo-

ment problem assuming that spectral controllability holds. The approach we
used is essentially based on the property of minimality of the operator's family
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of exponentials. This allows to construct steering controls and solve moment
problem for each state of the model space.

[1] F. Colonius, On approximate and exact null controllability of delay systems, Systems Control Lett. 5
(1984), no. 3, 209�211.

[2] M.Q Jacobs, C. E. Langenhop, Criteria for function space controllability of linear neutral systems, SIAM
J. Control Optimization 14 (1976), no. 6, 1009�1048.

[3] V. M. Marchenko, On the controllability of zero function of time lag systems. (Russian), Problems Control
Inform. Theory/Problemy Upravlen. Teor. Inform. 8 (1979), no. 5-6, 421�432.

[4] A. W. Olbrot, L. Pandol�, Null controllability of a class of functional-di�erential systems, Internat. J.
Control 47 (1988), no. 1, 193�208.

[5] R. Rabah, G.M. Sklyar, and P.Y. Barkhayev, Exact null controllability, complete stabilizability and con-
tinuous �nal observability of neutral type systems, Int.J.Appl.Math.Comp.Sci. 27(3) (2017), 489�499.

Nano thermo-hydrodynamics models for quantitative

estimations of the cell membrane �uidity: a review

Liliya Batuyk, Kharkov, Ukraine
Nataliya Kizilova, Kharkov, Ukraine

The cells are the smallest units of the live matter, and their interaction with
other cells and environment are determined by the cellular membranes. The latter
possess mechanical, thermal and electric properties, which values strongly depend
on the state of the cells (healthy, in�uenced, stresses, diseased). That is why
the mathematical models of the cellular membrane and their physical properties
are essential for the medical diagnostics purposes [1]. The mechanical properties
of the cells and their membranes are represented by their density, elasticity and
�uidity. While the density can be easily measured; the elasticity can be estimated
by the rheometry and micro/nano indentometry; but the measurements of �uidity
needs more complex mathematical models and governing equations for the heat
transfer [2]. The most relevant model of the heat transfer at the micro and nano
scales is based on the Navier-Stokes equations for the incompressive �uid (water
as the main components of the cells and their membranes) combined by the heat
transfer equation in the Guyer-Krumhansl form [3]

τ
∂2T

∂t2
+
∂T

∂t
+ ρbcbwb(T − T )b) = k

(
∇2T + a

∂

∂t
∇2T

)
+ qm + qe, (1)

where T is the temperature, τ is the relaxation time, a is the di�usivity, k is
the thermal conductivity, qm and qe are the methabolic and externally stimulated
sources of heat, the subscript b related to the blood �ow in the tissues provided
the cells in the perfused tissue or bioreactor are considered.
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The system of the Navier-Stokes equations together with the heat equation
in the form (1) has been solved by the �nite di�erence method with iterations
over time.

[1] Gad-el-Hak M. The MEMS Handbook. Second ed. CRC Press, New York. � 2006.

[2] Yang Y., Liu J. Nano thermo-hydrodynamics method for investigating cell membrane �uidity. // Front.
Energy Power Eng. China. � 2008, � 2(2). � pp. 121-128.

[3] N�obrega S. , Coelho P. J. A parametric study of thermal therapy of skin tissue. // J. Thermal Biol. �
2017. � 63(2). � pp. 92-103.

On synthesis problem for inherently nonlinear systems

Maxim Bebiya, Kharkiv, Ukraine

We study the controllability problem for a class of nonlinear systems of the
form {

ẋ1 = u, |u(x)| ≤ d,

ẋi = x
2ki−1+1
i−1 + fi−1(t, x, u), i = 2, . . . , n,

(1)

where u ∈ R is a control, d > 0 is a given number, ki = pi
qi

(pi > 0 is an
integer, qi > 0 is an odd integer), fi(t, x, u) (i = 1, . . . , n− 1) are continuous
real-valued functions with fi(t, 0, 0) = 0 for all t ≥ 0.

We construct a class of bounded controls u = u(x) such that for any initial
point x0 ∈ U(0) the solution x(t, x0) of the corresponding closed-loop system
is well-de�ned on the interval [0, T (x0)] and ends at 0 in a �nite-time T (x0) <
+∞, i.e. limt→T (x0) x(t, x0) = 0.

The class of smooth stabilizing controls for system (1) was proposed in [1].
The synthesis problem for the case when fi(t, x, u) = 0 (i = 1, . . . , n − 1)
and ki = 0 (i = 1, . . . , n − 2), kn−1 > 0 was solved in [2]. The approach
which was proposed in [2] for constructing �nite-time stabilizers is based on the
controllability function method [3]. Under some additional growth conditions
imposed on functions fi(t, x, u) we develop this approach to construct a class of
bounded �nite-time stabilizing controls u = u(x) for system (1). To this end,
we construct a class of controllability functions Θ(x) such that the inequality
Θ̇(x) ≤ −βΘ1− 1

α (x) holds for some α ≥ 1, β > 0. The former inequality
guarantees that any trajectory of the closed-loop system starting in U(0) hits
the origin in some �nite time T (x0).

[1] Bebiya M.O. and Korobov V.I., On Stabilization Problem for Nonlinear Systems with Power Principal
Part // Journal of Mathematical Physics, Analysis, Geometry, 2016, Vol. 12, No. 2, 113�133.

[2] Bebiya M.O., Global synthesis of bounded controls for systems with power nonlinearity // Visnyk of
V.N. Karazin Kharkiv National University, Ser. Mathematics, Applied Mathematics and Mechanics, 2015,
Vol. 81, 36�51.

[3] Korobov V.I., The method of controllability function, R&C Dynamics, M.-Izhevsk, 2007 (in Russian).
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Constructive methods of investigation of the

di�erential-algebraic Cauchy problem

Sergey Chuiko, Slavyansk, Ukraine

We investigate the problem of the determination of constructive conditions
for the existence of solution z(t) ∈ C1[a, b] of the linear di�erential-algebraic
equation [1,2,3]

A(t)z′(t) = B(t)z(t) + f(t). (1)

The matrices

A(t), B(t) ∈ Cm×n[a, b] := C[a, b]⊗ Rm×n, m 6= n

and the vector function f(t) ∈ C[a, b] are assumed to be continuous on the
segment [a, b].

Found solvability conditions and construction of the generalized Green ope-
rator of the Cauchy problem for a linear di�erential-algebraic system (1). Found
su�cient conditions for reducibility generalized matrix di�erential-algebraic equa-
tion (1) to a sequence of systems combining di�erential and algebraic equations.
An original classi�cation is proposed, as well as a uni�ed scheme for constructing
solutions of di�erential-algebraic equations (1).

The method for construction of solvability conditions and construction of
the generalized Green operator for linear di�erential-algebraic equation (1) can
be generalized to boundary value problem for the matrix di�erential-algebraic
equations in various critical and noncritical cases [4,5,6].

[1] Campbell S.L. Singular Systems of di�erential equations, Pitman Advanced Publishing Program, San
Francisco-London-Melbourne, 1980: 1-178.

[2] Boichuk A. A., Samoilenko A. M. Generalized Inverse Operators and Fredholm Boundary-value Prob-
lems 2-nd edition, Walter de Gruyter GmbH & Co KG, 2016: 1-298.

[3] Chuiko S. M. On the lowering of the order of the matrix di�erential-algebraic system (in Russian) //
Ukrainian math. bulletin. � 2018. � 15. � �1. � pp. 1 � 17.

[4] Boichuk A. A., Krivosheya S. A. A critical periodic boundary value problem for a matrix Riccati equation
// Di�erential Equations. � 2001. � 37. � �4. � pp. 464 � 471.

[5] Chuiko S. M. The Green's operator of a generalized matrix linear di�erential-algebraic boundary value
problem // Siberian Mathematical Journal. � 2015. � 56. � �4. � pp. 752 � 760.

[6] Chuiko S. M. A generalized matrix di�erential-algebraic equation // Journal of Mathematical Sciences
(N.Y.). � 2015. � 210, � 1. � pp. 9 � 21.
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Constructive methods of investigation of the

di�erential-algebraic Cauchy problem with degenerate

pulse action

Sergey Chuiko, Slavyansk, Ukraine
Elena Chuiko, Slavyansk, Ukraine

We investigate the problem of the determination of constructive conditions
for the existence of solution [1]

z(t) ∈ C1{[a; b] \ {τi}I}

of the linear di�erential-algebraic equation [2,3]

A(t)z′(t) = B(t)z(t) + f(t), t 6= τi, i = 1, 2, . . . , p (1)

with the impulse action [1,4]

∆z(τi) = Si z(τi − 0) + ai, Si ∈ Rn×n, τi ∈ [a, b], ai ∈ Rn. (2)

The matrices

A(t), B(t) ∈ Ck×n[a, b] := C[a, b]⊗ Rm×n, m 6= n

and the vector function f(t) ∈ C[a, b] are assumed to be continuous on the
segment [a, b]. Provided

det(In + Si) = 0, i = 1, 2, . . . , p

for the principal solution matrix X(t) of the linear di�erential-algebraic equation
(1) holds degenerate case [5,6].

[1] Boichuk A. A., Samoilenko A. M. Generalized Inverse Operators and Fredholm Boundary-value Prob-
lems 2-nd edition, Walter de Gruyter GmbH & Co KG, 2016: 1-298.

[2] Campbell S.L. Singular Systems of di�erential equations, Pitman Advanced Publishing Program, San
Francisco-London-Melbourne, 1980: 1-178.

[3] Chuiko S. M. On the lowering of the order of the matrix di�erential-algebraic system (in Russian) //
Ukrainian math. bulletin. � 2018. � 15. � �1. � pp. 1 � 17.

[4] Samoilenko, A.M., Perestyuk, N.A. Impulsive Di�erential Equations (in Russian), Vischa Scola, Kiev,
1987: 1-287.

[5] Chuiko S.M. A Generalized Green operator for a boundary value problem with impulse action // Di�er-
ential Equations. � 37. � �8. � 2001. � pp. 1189 � 1193.

[6] Chuiko S. M. A Green operator for boundary value problems with an impulsive e�ect (in Russian) //
Doklady Mathematics. � 64, �
1. � July 2001. � �2. � pp. 170 � 172.
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About an approximate solution of matrix

di�erential-algebraic boundary-value problems with a

least-squares method

Sergey Chuiko, Slavyansk, Ukraine
Olga Nesmelova, Slavyansk, Ukraine
Marina Dzuba, Slavyansk, Ukraine

We investigate the problem of the determination of conditions for the exis-
tence of solution [1]

Z(t) ∈ C1
α×β[a; b] := C1[a; b]⊗ Rα×β

of the matrix di�erential-algebraic equation [2,3,4]

AZ ′(t) = BZ(t) + F (t), (1)

that satisfy the boundary condition

LZ(·) = A, A ∈ Rµ×ν (2)

and the construction of this solution. Here,

AZ ′(t) : C1
α×β[a, b]→ Cγ×δ[a, b], BZ(t) : C1

α×β[a, b]→ C1
γ×δ[a, b]

is a matrix operator, which ensures, by de�nition, the equality [5,6]

A(ζ ′(t)Ξ1 + ξ′(t)Ξ2)(t) = ζ ′(t)A(Ξ1)(t) + ξ′(t)A(Ξ2)(t),

B(ζ(t)Ξ1 + ξ(t)Ξ2)(t) = ζ(t)B(Ξ1)(t) + ξ(t)B(Ξ2)(t)

for any functions ζ(t), ξ(t) ∈ C1[a, b] and any constant matrices Ξ1,Ξ2.

[1] Boichuk A. A., Samoilenko A. M. Generalized Inverse Operators and Fredholm Boundary-value Prob-
lems 2-nd edition, Walter de Gruyter GmbH & Co KG, 2016: 1-298.

[2] Campbell S.L. Singular Systems of di�erential equations, Pitman Advanced Publishing Program, San
Francisco-London-Melbourne, 1980: 1-178.

[3] Chuiko S. M. On the lowering of the order of the matrix di�erential-algebraic system (in Russian) //
Ukrainian math. bulletin. � 2018. � 15. � �1. � pp. 1 � 17.

[4] Boichuk A. A., Krivosheya S. A. A critical periodic boundary value problem for a matrix riccati equation
// Di�erential Equations. � 2001. � 37. � �4. � pp. 464 � 471.

[5] Chuiko S. M. The Green's operator of a generalized matrix linear di�erential-algebraic boundary value
problem // Siberian Mathematical Journal. � 2015. � 56. � �4. � pp. 752 � 760.

[6] Chuiko S. M., Nesmelova O. V., Dzuba M. V. Least-squares method in the theory of matrix di�erential-
algebraic boundary-value problems // Ukr.Mat. Zh. � 2018. � 70. � �2. � pp. 280 � 292.
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Seminonlinear matrix boundary-value problem

Sergey Chuiko, Slavyansk, Ukraine
Denis Sysoev, Slavyansk, Ukraine

We establish necessary and su�cient conditions for the existence of solutions

Z(t, ε) : Z(·, ε) ∈ C1[a; b], Z(t, ·) ∈ C[0; ε0], Z(t, ε) ∈ Rα×β

of a nonlinear matrix di�erential equation [1,2]

Z ′(t, ε) = AZ(t, ε) + Z(t, ε)B + F (t, ε) + ε Φ(Z(t, ε), µ(ε), t, ε) (1)

with a boundary condition

LZ(·, ε) = A+ εJ(Z(·, ε), µ(ε), ε), A ∈ Rδ×γ, α 6= β 6= δ 6= γ. (2)

We seek the solution of the matrix boundary-value problem (1), (2) in a small
neighborhood of the generating problem

Z ′0(t, ε) = AZ0(t, ε) + Z0(t, ε)B + F (t, ε), LZ0(·, ε) = A. (3)

Here, A ∈ Rα×α and B ∈ Rβ×β are constant matrices. Assume that the non-
linear matrix operator Φ(Z(t, ε), µ(ε), t, ε) : Rα×β → Rα×β is Frechet di�eren-
tiable with respect to the �rst argument in a small neighborhood of the solution
of the generating problem and continuously di�erentiable with respect to µ in a
small neighborhood of the solution of the generating problem (3) and the initial
value µ0(ε) of the eigenfunction µ(ε). The nonlinearity Φ(Z(t, ε), µ(ε), t, ε) and
inhomogeneity of the generating problem F (t, ε) are regarded as continuous in t
on a segment [a, b] and in the small parameter ε on a segment [0, ε0]. In addition,
LZ(·, ε) is a linear bounded matrix functional: LZ(·, ε) : C1[a; b]→ Rδ×γ. The
nonlinear matrix functional J(Z(·, ε), µ(ε), ε) : C[a, b] → Rm is continuously
di�erentiable with respect to Z in a small neighborhood of the solution of the
generating problem (3), continuously di�erentiable with respect to µ in a small
neighborhood of the solution of the generating problem (3) and the initial value
µ0(ε) of the eigenfunction µ(ε); and continuous in the small parameter ε on the
segment [0, ε0].

[1] Boichuk A. A., Samoilenko A. M. Generalized Inverse Operators and Fredholm Boundary-value Prob-
lems 2-nd edition, Walter de Gruyter GmbH & Co KG, 2016.

[2] Chuiko S. M., Sysoev D. V. Weakly nonlinear matrix boundary-value problem in the case of parametric
resonance // Journ. of Math. Sciences. � 2017. � 223. � 3. � pp. 337�350.
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On the Stability of Invariant Sets of Functional

Di�erential Equations with Delay

Constantin Corduneanu, Arlington, USA
Alexander Ignatyev, Donetsk, Ukraine

Systems of functional di�erential equations with delay

dz(t)/dt = Z(t, zt)

and

dz(t)/dt = Z(t, zt) +R(t, zt)

are considered where z = (x, y), x ∈ Rn, y ∈ Rm, and Z and R are the vector-
valued functionals. It is supposed that these systems have a positive invariant
set x = 0. The conditions are given when the uniform asymptotic stability of of
the invariant set of the �rst system implies the uniform asymptotic stability of
the invariant set of the second system. The asymptotic stability of this invariant
set of the �rst system is studied separatly when the right-hand side of the system
is an almost periodic in t.

Stability analysis of particular random switched linear

dynamical system

Anna Derevianko, Kharkiv, Ukraine
Kamila Domaga la, Katovice, Poland

Interest in switched systems is based on their real-life applications. Engineer-
ing, natural and social systems cannot be simply described by a single model and
in that cases systems exhibit switching between several models depending on var-
ious environments and applications. For example, switching has been extensively
exploited in many engineering systems such as electronics, power systems, and
tra�c control.

The main reason of considering switch is that unpredictable, sudden change
in the system dynamics or structures, such as a failure of a component or sub-
system, or the accidental activation of any of the subsystems can occur. It is
also introduced for e�ective control of highly complex non-linear systems of the
so-called hybrid control. In both cases, an essential feature is the interaction
between the continuous system dynamics and the discrete switching dynamics.

The main result of the work, given by simulations, con�rms from a practical
point of view the theoretical results [1],[2]. The examples of unstable and stable
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switched linear systems have been analysed and simulated with a help of the
Matlab software - Simulink.

It was concluded that the stability of each linear system does not provide
the stability of the corresponding switched linear system. Moreover, it was ob-
tained that continuous-time switched linear system does not imply the stability
in discrete-time.

[1] Coppel, W.A. Stability and Asymptotic Behavior of Di�erential Equations.// Boston: D. C. Heath and
Company , 1965.

[2] Colaneri, Patrizio. Analysis and Control of Linear Swithed Systems.// Politecnico di Milano, 15 July
2018,

The synchronization of the angular velocities of

identical rigid bodies

Iryna Dmytryshyn, Slavyansk, Ukraine

We consider a mechanical system consisting of two rigid bodies, one of which
is the master, and the other is the slave. It is assumed that the slave body
has control, depending on its own state and the state of the leading body. We
propose control law, that solves the problem of the bodies angular velocities
synchronization in the form of feedback on the states of these systems. Our
main goal to construct a control obtained from such feedback by substitution
instead of the state of the master system their estimates obtained as a result
observation problem solution. The question of whether such "approximate"
control solve the initial problem are considered in stabilization theory, see for
example, [1], where the corresponding separation principle was formulated. A
non-linear observer is constructed using the method of invariant relations, the
synthesis scheme of auxiliary invariant relations for which was described in [2].
Using the second Lyapunov method, it is shown that the output control thus
obtained solves original synchronization problem.

[1] Freeman R. Global internal stabilizability does not imply global external stabilizability for small sensor
disturbances / R.Freeman // IEEE Transactions on Automatic. Control. 1995, V.40, 12, P. 2119-2122.

[2] Zhogoleva N.V., Scherbak V.F. Synthesis of additional relations in inverse control problems (in Russian)
/ Nina Zhogoleva, Vladimir Shcherbak // Proceedings of IAMM NAS of Ukraine. - 2015. - Vol.29 - P.
69-76
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The Stieltjes matrix moment problem and associated

positive symmetric operators

Yury Dyukarev, Kharkiv, Ukraine

A sequence of m×m matrices (sj)
∞
j=0 is called R - positive (R+ - positive )

if, for all l > 0, the Hankel matrices H
(l)
1 = (sj+k)

l
j,k=0 are positive(the Hankel

matrices H
(l)
1 and H

(l)
2 = (sj+k+1)

l
j,k=0 are positive, respectively).

Let the sequence (sj)
∞
j=0 be R - positive. Then nonnegative matrix measures

σ are called solutions to the Hamburger matrix moment problem if

sj =

∫ ∞
−∞

tjσ(dt), j ≥ 0.

Let the sequence (sj)
∞
j=0 be R+ - positive. Then nonnegative matrix measures

σ are called solutions to the Stieltjes matrix moment problem if

sj =

∫ ∞
0

tjσ(dt), j ≥ 0.

The ranks of the radii of the limit Weyl discs are the geometric measure of
degeneracy of the solution set to the Hamburger moment problem. The de�-
ciency numbers of the associated symmetric operator are the operator measure of
degeneracy of the solution set. Note that the geometric and operator measures
of degeneracy are equal.

The ranks of the limit matrix Weyl intervals (see [1]) are the geometric mea-
sure of degeneracy of of the solution set to the Stieltjes moment problem. How-
ever, the operator measure of degeneracy of of the solution set to the Stieltjes
matrix moment problem has remained uninvestigated. We introduce the oper-
ator measure of degeneracy of the solution set to the Stieltjes matrix moment
problem in terms of the de�ciency subspaces of a pair of positive symmetric oper-
ators, which is a novel approach. A relation between the operator and geometric
measures of degeneracy of the solution set to the Stieltjes matrix moment prob-
lem is established. As a corollary, some results for the Stieltjes matrix moment
problem are proved (see [2]).

[1] Dyukarev Yu. M. Indeterminacy criteria for the Stieltjes matrix moment problem. // Mathematical Notes.
� 2004. � 75(1). � pp. 66-82.

[2] Dyukarev Yu. M. Geometric and operator measures of degeneracy for the set of solutions to the Stieltjes
matrix moment problem. // Sb. Math. � 2016. � 207(4). � pp. 519 - 536.
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Controllability problems for the heat equation on a

half-axis

Larissa Fardigola, Kharkiv, Ukraine
Kateryna Khalina, Kharkiv, Ukraine

Consider the heat equation

wt(x, t) = wxx(x, t), x ∈ (0,+∞), w(0, t) = u(t), (1)

controlled by the boundary condition

w(0, t) = u(t), t ∈ (0, T ), (2)

under the initial condition

w(x, 0) = w0(x), x ∈ (0,+∞), (3)

where T > 0 is given, u ∈ L∞(0, T ) is the control, the state w(·, t), t ∈ (0, T ),
and the initial state w0 belong to the space H0(0,+∞) of the Sobolev type.

A state w0 ∈ H0(0,+∞) is called approximately controllable at a given
time T if for any wT ∈ H0(0,+∞) and for any ε > 0 there exists a control
uε ∈ L∞(0, T ) such that for the solution wε to system (1)�(3) with u = uε we
have

∥∥wT − wε(·, T )
∥∥ < ε.

In the talk, it is shown that each state w0 ∈ H0(0,+∞) is approximately con-
trollable at a given time T . The controls solving the approximate controllability
problems are constructed.

For a state w0 ∈ H0(0,+∞), by R1
T (w0) denote a set of states wT ∈

H0(0,+∞) for which there exists a control u ∈ L∞(0, T ), 0 ≤ u(t) ≤ 1,
t ∈ (0, T ), such that for the solution w to system (1)�(3) we have w(·, T ) = wT .

For states w0, wT ∈ H0(0,+∞), we obtain necessary and su�cient con-
ditions for wT ∈ R1

T (w0). Under these conditions, using the Markov power
moment problem, it is constructed a sequence {un}∞n=1 of bang-bang controls
(u(t) ∈ {0, 1}, t ∈ (0, T )) such that for the solution w to system (1)�(3) with
u = un we have ‖wn(·, T )− wT‖ → 0 as n→∞.

These results are illustrated by examples.
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Linear operator-di�erential equation with generalized

quasipolinomial on the right-hand side

Sergey Gefter, Kharkiv, Ukraine
Aleksey Piven', Kharkiv, Ukraine

We consider the Cauchy problem

u′(z) = Au(z) + eγzf(z), z ∈ C. (1)

u(0) = b ∈ D(A), (2)

where A is a closed operator on a complex Banach space X with a domain
D(A) (D(A) is not necessarily dense in X), γ ∈ C and f : C→ X is an entire
vector-valued function of zero exponential type.

Theorem 1. If γ is a regular point of the operator A, then Equation (1)
has the following unique solution of the form eγzv(z), where v(z) is an entire
vector-valued function of zero exponential type,

u(z) = −eγz
∞∑
n=0

(A− γI)−(n+1)f (n)(z).

Thus, the Cauchy problem (1), (2) has a solution of the above form if and only
if b = −

∑∞
n=0(A− γI)−(n+1)f (n)(0).

Now, we assume that γ is an isolated point of the spectrum of A. We
introduce the spectral projection Pγ corresponding to γ and expand the operator

A = Aγ+̇Ãγ with respect to the direct sumX = Xγ+̇X̃γ, Xγ = Pγ(X), X̃γ =
(I − Pγ)(X).

Theorem 2. If the operator A− γI is not quasinilpotent, then the Cauchy
problem (1), (2) has a solution of the form eγzv(z), where v(z) is an entire
vector-valued function of zero exponential type if and only if

(I − Pγ)b = −
∞∑
n=0

(Ãγ − γI)−(n+1)(I − Pγ)f (n)(0).

Moreover, such a solution is unique and admits the representation

u(z) = ezAγPγb+

z∫
0

eγζe(z−ζ)AγPγf(ζ)dζ−

−eγz
∞∑
n=0

(Ãγ − γI)−(n+1)(I − Pγ)f (n)(z).
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Approximate solutions of the Boltzmann equation

with in�nitely many modes

Vyacheslav Gordevskyy, Kharkiv, Ukraine
Oleksii Hukalov, Kharkiv, Ukraine

We consider the nonlinear kinetic Boltzmann equation in case of a model of
hard spheres [1]. We construct an approximate solution in the form

f(t, x, V ) =
∞∑
i=1

ϕi(t, x)Mi(V ), (1)

where ϕi(t, x) are smooth, nonnegative and bounded on R4 functions. The
exact solutions Mi(V ) are global Maxwellians:

Mi(V ) = ρi

(
βi
π

)3/2

e−βi(V−V i)
2

.

We use the uniform-integral error:

∆ = sup
(t,x)∈R4

∫
R3

dV
∣∣∣D(f)−Q(f, f)

∣∣∣.
Theorem 1. Let the coe�cient functions ϕi(t, x) in the distribution (1) be

such that the functional series:

∞∑
i=1

ϕiMi,

∞∑
i=1

|V |ϕiMi,

∞∑
i=1

Mi

∣∣∣∣∂ϕi∂t

∣∣∣∣ , ∞∑
i=1

Mi|V |
∣∣∣∣∂ϕi∂x

∣∣∣∣
converge uniformly in the whole space R4.

Then there exists such a quantity ∆′, that ∆ 6 ∆′ and lim
βi→+∞

∆′ is equal to:

∞∑
i=1

ρi sup
(t,x)∈R4

∣∣∣∣∂ϕi∂t
+

(
V i,

∂ϕi
∂x

)∣∣∣∣+ 2πd2
∞∑

i,j=1
i6=j

ρiρj

∣∣∣V i − V j

∣∣∣ sup
(t,x)∈R4

(ϕiϕj).

The quantity ∆ will be arbitrary small in the case, if
ϕi(t, x) = Ci(x − V it) or ϕi(t, x) = Ei

([
x, V i

])
and with a special selec-

tion of hydrodynamic parameters.

[1] Cercignani C. The Boltzman Equation and its Applications, Springer, New York, 1988: 455.

[2] Gordevskyy V. D., Hukalov O. O. Approximate solutions of the Boltzmann equation with in�nitely many
modes // Ukr. Mat. Zh. � 2017. � 69(3). - pp. 311-323.(Ukrainian)
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Feedback linearizability in the class C1

Svetlana Ignatovich, Kharkiv, Ukraine
Kateryna Sklyar, Szczecin, Poland

A control system ẋ = f(x, u) is called feedback linearizable if it is reduced
to a linear form ż = Az + Bv by some change of variables z = F (x) and a
control v = g(x, u). First results in the �eld were obtained in 1973. Namely,
V. I. Korobov [1] introduced a special class of nonlinear systems (�triangular
systems�) which were feedback linearizable. These studies were originated by
satellite control problems. Within this approach, triangular systems of the class
C1 were treated. On the other hand, A. Krener [2] considered the linearizability
for a�ne systems of the class C∞ by use of the Lie algebraic technique. Later, the
linearizability problem in the class C∞ was completely studied by B. Jakubczyk
and W. Respondek [3] and other authors.

In [4] a�ne systems ẋ = a(x) + b(x)u were considered where a(x), b(x)
are of the class C1. It turned out that in this case the feedback linearizability
conditions for systems of the class C∞ [3] are neither necessary nor su�cient.
The new ideas were proposed inspired by the original technique of triangular
systems. In particular, it was proposed to use some other vector �elds instead of
Lie brackets which may not exist in the class C1. In the talk we give an overview
of the results of [4] and their further development [5]�[7].

[1] Korobov V. I. Controllability, stability of some nonlinear systems // Di�er. Uravn. � 1973. � 9. � pp.
614-619 (Russian); English transl.: Di�erential Equations. � 1975. � 9. � pp. 466-469.

[2] Krener A. On the equivalence of control systems and the linearization of non-linear systems // SIAM J.
Control. � 1973. � 11. � pp. 670-676.

[3] Jakubczyk B., Respondek W. On linearization of control systems // Bull. Acad. Sci. Polonaise Ser. Sci.
Math. � 1980. � 28. � pp. 517-522.

[4] Sklyar G. M., Sklyar K. V., Ignatovich S. Yu. On the extension of the Korobov's class of linearizable
triangular systems by nonlinear control systems of the class C1 // Systems and Control Lett. � 2005. �
54. � pp. 1097-1108.

[5] Sklyar K. V., Ignatovich S. Yu. Linearizability of systems of the class C1 with multi-dimensional control
// Systems and Control Lett. � 2016. � 94. � pp. 92-96.

[6] Sklyar K. V., Ignatovich S. Yu., Sklyar G. M. Veri�cation of feedback linearizability conditions for control
systems of the class C1 // Proceedings of the 25th Mediterranean Conference on Control and Automation
(MED), Valetta, Malta. � 2017. � pp. 163-168.

[7] Sklyar K. V., Sklyar G. M., Ignatovich S. Yu. Linearizability of multi-control systems of the class C1 by
additive change of controls // Operator Theory: Advances and Appl. � 2018. � 267. � pp. 359-370.
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Representation of the organs' and tissues'

regeneration processes as a solution of some optimal

control problems the criteria and methods of which

are derived from the biological principles of

evolutionary developmental biology

Valeriia Karieva, Kharkiv, Ukraine
Sergey Lvov, Kharkiv, Ukraine

According to the most general ideas of the theoretical biology the regulatory
of the processes of maintaining the organs' and tissues' dynamic homeostasis
occurs due to the self-organization with some perturbation.

In complex dynamic systems of interacting cells the phenomenon of self-
organization is determined by the structure and properties of the network of
intercellular interactions. It is assumed that the dynamic system of interacting
cells is in an unstable equilibrium in the critical point domain (phase transition).

The structure and properties of the network of intercellular interactions is
the organ's and tissue's morphology which is inherited and, consequently, is
subordinated to the natural selection in the evolution process.

Hypothesis

Regulatory of the processes of maintaining / restoring organs' and tissues'
dynamic homeostasis on the basis of self-organization occurs according to certain
principles, the criteria of optimality that have developed during the organism
evolution.

On the example of liver regeneration we will consider the criteria for optimality
and the possible structure of the control system by the regeneration processes
proceeding from the principles of evolutionary development biology.

It is natural to assume that the model for a virtual control system is a deep
neural network. It follows that regulatory according to certain criteria of opti-
mality based on self-organization in the biological system of interacting cells is
analogous to the neurodynamic programming methods [1].

The representation of the regulation of biological processes as the solution
of some optimal control problems is one possible way of solving problems in
mathematical cellular biology which are connected with enormous complexity,
criticality and not observability.

[1] Simon Haykin. Neural Networks: A Comprehensive Foundation.// Macmillan Coll Div. � 1994. � pp. 625
- 754.
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Trajectory optimization for underwater gliders

Anatolii Khalin, Kharkiv, Ukraine
Sergiy Poslavskii, Kharkiv, Ukraine

The problem of �nding of the shortest trajectory of underwater glider, which
joins two oriented points with given constraints on curvature is presented. The
underwater glider is driven only via system of actuators, which consists of an
element, which is controlling the buoyancy of glider (called buoyancy engine)
and moving batteries, which are controlling location of glider's center of gravity
to maneuver. The absence of any other thrusts, screws or engines leads to
strong in�uence of hydrodynamic forces on its movement and, as a result, to the
complicated nonlinear mathematical model.

First time, a similar class of problems was investigated by A. A. Markov (1889)
in case of railway projection [1]. Later, L. E. Dubins' results on this problem
[2], presented in 1957, were widely applied to a cars' motion. Nowadays, the
revival of interest in such problems is associated with tremendous number of
applications in robotics, for example in the theory of motion of autonomous
underwater vehicles.

The report presents an overview of the main works which generalize the so-
lutions of Markov-Dubins problem which were obtained until now. In modern
works, since J.-D. Boissonnat's report in 1991 [3], the Pontryagin's Maximum
Principle is using as a foundation to solve the problem.

In this paper we consider new problem statements that take into account the
speci�c dynamics of a rigid body in dense incompressible �uid.

[1] Markov A. A. Some examples of the solution of a special kind of problem on greatest and least quanti-
ties.(Russian), Soobsheniya Kharkovskogo Mat. Obshestva, 1889, 1:250-276.

[2] Dubins L. E. On curves of minimal length with a constraint on average curvature and with prescribed
initial and terminal positions and tangents. American Journal of Mathematics, 1957, 79:497-516.

[3] Boissonnat J.-D., Cerezo A., Leblond J. Shortest path of bounded curvature in the plane. Research Report
RR-1503, INRIA, 1991, 1-20.

On numerical modeling of the river �ows with

validation on the measurement data

Anatoliy Khalin, Kharkov, Ukraine
Nataliya Kizilova, Kharkov, Ukraine
Nataliya Rychak, Kharkov, Ukraine

Mathematical modeling of the river �ows in the natural complex geometries is
a challenging problem for the environmental mechanics. Recently the numerical
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simulations of the river �ows is mostly based on the di�usive wave approximation
of the Saint-Venant equations which are derived by integration over the river
depth of the Reynolds averaged Navier-Stokes equations [1]. It is accepted, the
variations in the river morphology are small, and the empirical �ow resistance
distributions are accounted for. These equations are hyperbolic and capable
of studying some extreme conditions like the dam breaks. The di�usive wave
approximation of the Saint-Venant equations is parabolic and is obtained by
neglecting the inertial terms, so they are restricted to subcritical �ow conditions.
The di�usive wave shallow water equation is

∂h

∂t
+ div(~q) = qc, (1)

where h = H + z is the hydrological head, H is the river depth, z is the
coordinate of the river surface, qc are sources of water along the river bed,
~q = −kK∇h is the �ux, k = H5/3 is the conductivity, K = m−1

√
S is

the resistivity of the river bed, S =
(
(∂h/∂x)2 + (∂h/∂z)2

)1/2
is the friction

slope, m is the Manning coe�cient. The reliability of the approximation (1) for
the runo� simulations has been shown in a series of research papers [1]. Here
the model (1) has been used for the numerical computations of the velocity,
pressure, and vortexes distributions in a segment of the Seversky Donets River
near Kharkiv city. The results of the FEM computations on the model has been
compared to the measurement data in dynamics during the 2015 � 2018 years.
The �ow-based bottom modi�cations are explained by the mechanical forces and
the ratio between the areas of the moving waters and stagnant waters has been
proposed for the prognosis of evolution of the river basin.

[1] Thermo-Hydro-Mechanical-Chemical Processes in Porous Media: Benchmarks and Examples. /Ed. by
O. Kolditz, U.-J. Grke, H. Shao, W. Wang. Springer Science Business Media, � 2012. � 399pp.

Spectral properties of a non-selfadjoint di�erential

operator with block-triangular operator coe�cients

Aleksandr Kholkin, Mariupol, Ukraine

In the study of the connection between spectral and oscillation properties of
non-self-adjoint di�erential operators with block-triangular operator coe�cients
(see [1]) the question arises of the structure of the spectrum of such operators. In
spite of the fact that the di�erential operator with block-triangular coe�cients is
non-self-adjoint, under certain conditions its spectrum can be real. At the same
time, a non-self-adjoint operator, unlike a self-adjoint operator, can have points
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at which the resolvent has a pole, but which are not eigenvalues of the operator.
They are called spectral singularities.

For an operator with a triangular matrix potential decreasing at in�nity, which
has a bounded �rst moment, the structure of the spectrum was established in
the works of F.S. Rofe - Beketov and E.N. Bondarenko.

In this work we have obtained su�cient conditions under which the spectrum
of a non-self-adjoint di�erential operator with block- triangular operator potential
growing at in�nity is real and discrete. The operator has no spectral singularities
and its spectrum coincides with the union of the spectra of semibounded self-
adjoint operators corresponding to self-adjoint diagonal elements. In this case,
the growth rate of elements not standing on the main diagonal is subordinated
to the growth rate of the diagonal elements. If these conditions are violated, the
appearance of points of spectral singularities is possible. An example is given in
[2].

[1] Kholkin A. M., Rofe-Beketov F. S. Sturm type oscillation theorems for equations with block-triangular
matrix coe�cients.// Meth. of Func. Anal. Topol. �2012. �18(2). �pp. 176-188.

[2] Kholkin A.M. Spectral singularities of di�erential operators with triangular matrix coe�cients. // Meth.
of Func. Anal. Topol. � 2013. � 19 (3). � pp. 260 - 267.

On bioheat equation and its modi�cations

Nataliya Kizilova, Kharkov, Ukraine
Anatoliy Korobov, Kharkov, Ukraine

Mathematical modeling of the optical and infrared heating of biological tissues
is based on the Pennes bioheat balance equation [1] and its modi�cations, the
single-phase lag (SFL) [2] and dual-phase lag (DFL) [3] models. The Pennes
bioheat equation is

ρc
∂T

∂t
= div (k∇T ) + qmet = qh + ρbcbwb(Tb − T ), (1)

where T is the temperature, ρ, c, k are the density, speci�c heat and thermal
conductivity of the tissue, the subscript b relates to the blood, wb is the blood
perfusion rate, qmet and qh are metabolic and photostimulated heats.

The SFL model accounts for the time delay τq between the heat �ux q and
the temperature gradient ∇T that give the equation

ρcτq
∂2T

∂t2
+ (ρc+ ρbcbwbτq)

∂T

∂t
= div (k∇T ) + qmet + qh + ρbcbwbTb. (2)



September 25�27, 2018, Kharkiv, Ukraine 31

The DTL model accounts for two time lags τq and τT and has the form similar
to (2). As it was shown, the SFL and DFL models are thermodynamically
inconsistent, while the Guyer-Krumhansl equation as an example of the non-
Fourier heat conduction law is thermodynamically correct.

In this paper the 1D solutions of the models (1)-(2) and the Guyer-Krumhansl
equation for the surface heating of human skin are considered. The computa-
tional results are compared to the measured curves T (t). It is shown, the Guyer-
Krumhansl equation gives the best correspondance between the computational
and measured curves for both heating and relaxation precesses.

[1] Xu F. , Lu T. J., Se�en K. A. Biothermomechanics of skin tissues. // J. Mech. Phys. Solids. � 2008. �
56(4). � pp. 1852 - 1884.

[2] Ciesielski M., Mochnacki B. , Piasecka-Belkhayat A. Analysis of temperature distribution in the heated
skin tissue under the assumption of thermal parameters uncertainty. // 40th Solid Mechanics Conference.
Warsaw, IPPT. � 2016. � P048.

[3] N�obrega S. , Coelho P. J. A parametric study of thermal therapy of skin tissue. // J. Thermal Biol. �
2017. � 63(2). � pp. 92 - 103.

Mathematical modeling of the bioactive arterial wall

Nataliya Kizilova, Kharkov, Ukraine
Elena Solovyova, Kharkov, Ukraine

Due to their bioactivity, the vessel walls can respond to the elevation of the
blood pressure and wall shear stress [1]. The mechanical model of the bioactive
arterial wall is based on the rheological equation of the wall [1]

ΛR
∂R

∂t
+R = ΛP

∂P

∂t
+ (F1(P )− F2(C)) Φ(b), (1)

where C and b are concentrations of Ca++ and NO, R and P are the radius
of the vessel and the blood pressure in it, ΛR, ΛP , F1(P ), F1(P ) and Φ(b) are
known empirical functions.

The in�uence of the Ca++ on the smooth muscle cells is governed by the
kinetic equation [2]

α
∂C

∂t
= −C + ψ(σ) + β

∂P

∂t
, (2)

where σ = PR/h is the circumferential stress, h is the wall thickness, α and β
are constants.

Distribution of the NO is giverned by the di�usion equation

∂b

∂t
= Db∇2b− kbξ, (3)
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where Db is the di�usion coe�cient, k and ξ are constants.
The momentum equation for the wall has been taken in the form [2]

2πR
∂R

∂t
=

π

8µ

∂

∂t

(
R4∂P

∂x

)
, (4)

where µ is the blood viscosity.
The system of partial di�erential equations (1)-(4) has been studied numer-

ically by the �nire di�erence method and iterations over time at a wide set of
material parameters. Di�erent regimes of the �ow control by the bioactive wall
are discussed.

[1] Zamir M. The Physics of Pulsatile Flow. Springer, � 2000.

[2] Regirer S. A., Shadrina N. X. Mathematical models of nitric oxide transport in a blood vessel. // Bio�zika.
� 2005. - Vol.50(3). � pp. 515-536.

Feedback synthesis for motion of a material point with

allowance for friction

Valery Korobov, Kharkiv, Ukraine
Tetiana Revina, Kharkiv, Ukraine

Let us consider the feedback synthesis for motion of material point with
allowance for friction:(

ẋ1

ẋ2

)
=

(
x2

p(t, x1, x2)x2 + u

)
. (1)

Here t ≥ 0, (x1, x2) ∈ R2 is a state; u is a scalar control, |u| ≤ 1; p(t, x1, x2)
is unknown nonlinear viscous friction, p1 ≤ p(t, x1, x2) ≤ p2. The approach
presented in the talk is based on the controllability function method proposed
by V.I. Korobov in 1979. In [1] a control u(x) solving the feedback synthesis
problem for system (1) without friction was given. It satis�es two conditions:
1) |u(x)| ≤ 1; 2) the trajectory x(t) starting from an initial point x(0) = x0 ∈

R2 of the closed system

(
ẋ1

ẋ2

)
=

(
x2

u(x)

)
ends at the origin at a �nite time

T > 0, and, in addition, the time T is equal to Θ(x0) for any x0 ∈ R2.
The main goal of the research is to �nd friction limits such that a control

steering the system without friction to the origin also steers the system with
friction to the same target.

Theorem 1. Let a1 < −4.5, 0 < γ1 < 1, γ2 > 1, c > 0. The controllability
function Θ = Θ(x1, x2) is de�ned for x 6= 0 as a unique positive solution of the
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equation
(4 + a1)Θ

4

a1(3 + a1)
− a1x

2
1 + 4Θx1x2 + Θ2x2

2 = 0. (2)

Let Q = {(x1, x2) | Θ(x1, x2) ≤ c}, u(x) =
a1x1

Θ2(x1, x2)
− 3x1

Θ(x1, x2)
,

p0
1 = max{(1− γ1)p̃

0
1; (1− γ2)p̃

0
2}, p0

2 = min{(1− γ1)p̃
0
2; (1− γ2)p̃

0
1},

p̃0
1 =

3 + a1 −
√
a1(a1 + 4)

c
, p̃0

2 =
3 + a1 +

√
a1(a1 + 4)

c
.

Then, for all p1 ≤ p(t, x1, x2) ≤ p2 such that [p1; p2] ⊂ (p0
1; p

0
2), the trajectory

of the closed system starting from an initial point x(0) = x0 ∈ Q ends at
the point x(T ) = 0 at a �nite time T = T (x0, p1, p2) under the estimate
Θ(x0)/γ2 ≤ T (x0, p1, p2) ≤ Θ(x0)/γ1.

Furthermore we analyze the envelope for one-parametric family (2) at Θ = 1
for the system (1) with p(t, x1, x2) = 0. It is close to the curve that describes all
points from which we may steer to the origin due to the Pontryagin maximum
principle for the time t = 1.

[1] Choque Rivero A. E., Korobov V. I., Skoryk V. A. The controllability function as the time of motion 1.//
Jour. Math. Phys. Anal. Geom. � 2004. � 11(2). � pp. 208 - 225.

On one class of non-dissipative operators

Valentyna Levchuk, Poltava, Ukraine

The study of the basicity of systems of functions, as a rule, is based on the
study of some properties of linear operators. The study of the so-called class
of quasi-exponentials provokes special interest, it is started by B. S. Pavlov and
then developed and continued by S. V. Hru�s�cev, N. K. Nikolsky, B. S. Pavlov.
An approach suggested by G. M. Gubreyev is an important method of study-
ing problems of basicity in this realm of analysis. He succeeded in harmonic
combination of deep problems of spectral analysis of non-selfadjoint operators
and delicate analytical results of the theory of functions. This work is a de-
velopment of ideas of the paper by G. M. Gubreyev and V. N. Levchuk in
which the study of Dunkl kernels is based on the analysis of a non-selfadjoint
operator with two-dimensional imaginary component. (The function dα(λ) =
2αΓ(α + 1)λ−α (Jα(λ) + iJα+1(λ)) is said to be a Dunkl kernel, where Jα(λ)
is a Bessel function.) In contrast to, here the power dependence of the weight
function is not supposed. This work is dedicated to the study of one class of
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Volterra non-dissipative operators and to the construction of model representa-
tions for them. It turns out that many statements from are general and can be
obtained for �arbitrary� weight functions ϕ(x). General properties of the oper-
ator B are studied ant its characteristic function is calculated. Calculation of
this characteristic function is based on the solution of the equation of the sec-
ond order which depending on the choice of the weight ϕ(x) turns into either
a Bessel equation, a Mathieu equation, or a Lam�e equation. Similarity of the
studied non-dissipative operator to the operator of integration in the space of
quadratically summed functions on [−a, a] is proved. A functional model of a
non-dissipative operator in the L. de Branges space is listed, and it is shown that
in the special case, when ϕ(x) = xν, the Dunkl kernels �coincide� with E(λ).

Controllability of second-order partial di�erential

equations in time

Alexander Makarov, Kharkiv, Ukraine
Tatyana Solodova, Kharkiv, Ukraine

Consider the following Cauchy problem

∂2w(x, t)

∂t2
+ P

(
∂

∂x

)
∂w(x, t)

∂t
+Q

(
∂

∂x

)
w(x, t) = u(x)v(t),

w(x, 0) = ϕ(x), w′t(x, 0) = ψ(x),
(1)

where P
(
∂
∂x

)
and Q

(
∂
∂x

)
� di�erential operators with constant coe�cients,

v(t) � piecewise continuous function on a segment [0;T ] and functions u(x),
ϕ(x), ψ(x) belong to the Schwartz space S. We seek for a control u(x)v(t)
such that for all t ∈ [0;T ] the solution w(x, t) belongs to S and condition
w(x, T ) = 0 is ful�lled.

Suppose λ1(s) and λ2(s) are roots of the characteristic equation λ2 +
P (is)λ+Q(is) = 0.

Then the Cauchy function for the Fourier transformed equation w̃′′tt(s, t) +
P (is)w̃′t(s, t) +Q(is)w̃(s, t) = ũ(s)v(t) is as follows:

K(s, t, τ) =

(
eλ1(s)(t−τ) − eλ2(s)(t−τ)

)
λ1(s)− λ2(s)

.

The controllability condition of equation (1) will look like this

R(s, T )=
∫ T

0 K(s, T, τ)v(τ)dτ 6=0, ∀s ∈ Rn. The following results are valid.

Theorem 1. If the roots of the characteristic equation λj(s) are real and
at least one of them is bounded from above, then a control with v(t) = 1 and
u(x) ∈ S such that equation (1) is controllable in the space S exists.
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Theorem 2. If the roots of the characteristic equation λj(s) are imaginary,
then a control of the form eγ(T−t)u(x), where u(x) ∈ S, such that equation (1)
is controllable in the space S with some γ > 0 exists.

Theorem 3. If conditions Q(is) = 0 and ReP (is) ≤ c ∀s ∈ Rn are
satis�ed, then equation (1) is controllable in the space S with v(t) = 1.

Example. Equation ∂2w(x,t)
∂t2 − a24w(x, t)− kw(x, t) = u(x)v(t) is control-

lable in the space S with control of the form eγ(T−t)u(x) with some γ > 0.

Resolvent for certain classes of generators of C0-groups

Vitalii Marchenko, Kharkiv, Ukraine

The spectral theory of nonselfadjoint operators is much more complicated
than the theory for selfadjoint ones and it has many open problems. This is
caused mainly by a fact that the spectrum does not contain much informa-
tion about the behavior of nonselfadjoint operator. Thus important problems
are obtaining the explicit form of the resolvent and controlling the resolvent of
nonselfadjoint operator.

In this talk we will discuss the explicit form and asymptotic properties of the
resolvent for the classes of generators of C0-groups with purely imaginary eigen-
values, clustering at i∞, and complete minimal family of eigenvectors which,
however, do not form a Schauder basis. These classes were recently presented
by the author and Grigory Sklyar in [1]. Multiple applying of the discrete Hardy
inequality serves as the keystone for the proofs of the corresponding results.

This is a joint work with Grigory Sklyar.

Publications are based on the research provided by the grant support of the
State Fund For Fundamental Research (project N Φ83/82 - 2018).

[1] Sklyar G. M., Marchenko V. Hardy inequality and the construction of in�nitesimal operators with non-
basis family of eigenvectors// J. Funct. Anal. � 2017. � 272(3). � pp. 1017 - 1043.

Remarks on lower semicontinuous solutions of

Hamilton-Jacobi-Bellman equations

Arkadiusz Misztela, Szczecin, Poland

This talk is devoted to lower semicontinuous solutions of Hamilton-Jacobi
equations with convex Hamiltonians in the gradient variable. Such Hamiltonians
do arise in the optimal control theory. We present a necessary and su�cient
condition for the reduction of the Hamiltonian satisfying optimality conditions
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to the case when the Hamiltonian is positively homogeneous and also satis�es
optimality conditions. On one hand it allows us to reduce uniqueness of solutions
problem to Barron-Jensen [1] and Frankowska [2] theorems. On the other hand it
shows us the limits of applicability of this reduction. For Hamiltonians which are
not subject to the above reduction we present the new existence and uniqueness
theorems.

[1] Barron E.N., Jensen R., Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex
Hamiltonians, Comm. Partial Di�erential Equations. � 1990 � 15(12) � pp. 1713-1742.

[2] Frankowska H., Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, SIAM J. Control
Optim. � 1993 � 31(1) � pp. 257-272.

On the integration of nonlinear di�erential equation

Olena Oliinyk, Perejaslav-Khmelnitski, Ukraine

The Lax system of this form is studied in this paper
[a(x), γ(x)] = 0, x ∈ [0, l],

γ′(x) = i[a(x), σ2], x ∈ [0, l],

γ(0) = γ+,

(1)

where a(x) � spectral matrix measure, γ(x), σ2, γ
+ � self-conjugate n× n ma-

trices, and

a(x) > 0, tra(x) ≡ 1, x ∈ [0, l].

The solution of this system γ(x) is used in construction of triangular models of
commutative systems of operators [1].

Proposition 1. Let σ2 = diag(b1, ..., bn), γ+ = α1σ2 +α0I + iC, where
α1, α0 ∈ R, matrix C = (cjk)

n
j,k=1 = −C∗ and cjj = 0, j ∈ {1, . . . , n}.

Let further κ0, κ1, κ2 ∈ L1[0, l] � are real-valued functions. Then pair
{a(·), γ(·)}, where a(x) = κ2(x)γ(x)2 + κ1(x)γ(x) + κ0(x), x ∈ [0, l], and
γ(·) = (γjk(·))nj,k=1, is the solution of the (1) if and only if x ∈ [0, l] the
following equations are completed

γjj(x) = γ+
jj, j ∈ {1, . . . , n},

γjk(x) = iei(bj−bk)(K1(x)+(γ+jj+γ
+
kk)K2(x))yjk(x), j 6= k,

where

Kj(x) :=

∫ x

0

κj(t)dt, j ∈ {1, 2},
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and the functions yjk(·), j 6= k, satisfy the system
y′jk(x) = (bk − bj)κ2(x)

n∑
s=1,s6=j,k

yjs(x)ysk(x), x ∈ [0, l], j 6= k,

ykj(x) = −yjk(x), x ∈ [0, l], j 6= k,

yjk(0) = cjk, j 6= k.

(2)

At that, if cjk ∈ R, j 6= k, then any solution of the system (2) is real-valued.

[1] Zolotarev V. A. Analytical methods of spectral represantations of non-selfadjoint and non-unitary oper-
ators. � Kharkov: KhNU, 2003. � 342 pp. (Russian).

[2] Zolotarev V. A. Functional models of commutative systems of linear operators and de Branges spase on
the Riemannian surface.//Matematicheskiy sbornik, � 2009. Vol. 200. � 3. � Pp. 31-48. (Russian).

On asymptotic growth of solutions of C0 semigroups

Piotr Polak, Szczecin, Poland
Grigorij Sklyar, Szczecin, Poland

We consider linear di�erential equation

ẋ(t) = Ax(t), x(t) ∈ D(A) ⊂ X,

where A : D(A) → X is a closed (usually unbounded) operator generating C0

semigroup {T (t)}t≥0 on Banach space X. The talk is devoted to some aspects
of stability of the semigroup T (t) and corresponding solutions T (t)x. We discuss
some spectral conditions of asymptotic stability and present the generalizations
of stability concept: polynomial stability and the existence of the fastest growing
solution - so called maximal asymtotics. In particular we present our results in
the �eld of asymptotic behaviour of strongly continuous semigroups: theorem
on the su�cient condition for polynomial stability and theorem on non existence
of maximal asymptitics for some types of semigroups acting on a Banach space.

[1] W. Arendt and C.J.K. Batty, Tauberian theorems and stability of one parameter semigroups, Trans.
Amer. Math. Soc. 306 (1988), 837-852.

[2] A. B�atkai, K.J. Engel, J. Pr�uss, R. Schnaubelt, Polynomial stability of operator semigroups, Math. Nachr.
279 (2006), 1425�1440.

[3] Yu.I. Lyubich, V.Q. Phong, Asymptotic stability of linear di�erential equation in Banach space, Studia
Math. 88 (1988), 37-42.

[4] G. M. Sklyar On the decay of bounded semigroup on the domain of its generator, Vietnam J. Math. 43
(2015), 207�213.

[5] G. Sklyar, P. Polak, On Asymptotic Estimation of a Discrete Type C0-Semigroups on Dense Sets: Ap-
plication to Neutral Type Systems, Applied Math. Opti. 75 (2017) 175�192.

[6] G. M. Sklyar, V. Shirman, On asymptotic stability of linear di�erential equation in Banach space, Teoria
Funk., Funkt. Anal. Prilozh. 37 (1982), 127�132 (in Russian).
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Category-theoretic Methods for Studying Causality in

Distributed Systems

Lyudmyla Polyakova, Kharkiv, Ukraine
Hassan Khalil El Zein, Beirut, Lebanon
Grygoriy Zholtkevych, Kharkiv, Ukraine

The report describes the category-theoretic approach to the study of causali-
ty in discrete distributed systems. The trend of widespread use of distributed
computing, observed in recent years, is a technological answer to the practical
achievement of the upper bound of processor performance on the one side and
the development of communication tools on the other. In addition, there is a ten-
dency to integrate cybernetic and physical systems, which has been accelerated
in the context of developing Internet-of-Things.

The analysis of the problem allows us to state that the problems associated
with controlling parallel, distributed and concurrent computations turned out to
be on the leading edge of Computer Science and Information Technology. In
the focus of studying this problem area, the problem of modelling causality in
distributed systems holds a central position, in particular, modelling based on
the concept of logical time. There are two approaches to model logical time,
namely, the event-based approach and the state-based approach. Unfortunately,
the set-theoretic language does not give a natural description of the relationship
between these approaches. Our research focuses on the use of the language of
category theory, which is adequate for constructing models, is based on events
and is based on states.

There are a lot of studies deal with controlling discrete event dynamic systems,
which use the category-theoretic languages. These studies use the category-
theoretic notion �adjunction� to describe the interrelation between event-based
and state-based models of the systems.

Our main results are as follows
1. the category of clock structures has been de�ned; this category is used to
de�ne event-based models of logical time;
2. the subcategory of linear clock structures in the category of clock structures
has been de�ned; this category is used to de�ne physical models of logical time;
3. the category of schedules has been de�ned; this category is a bridge between
event-based and state-based modelling approaches;
4. equivalence between the categories of linear clock structures and schedules
has been proven.
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Stopping of oscillations of controlled elliptic pendulum

Tetiana Revina, Kharkiv, Ukraine
Vladislav Chuiko, Kharkiv, Ukraine

This work deals with the feedback synthesis problem for controlled elliptic
pendulum. The main idea of the article is to �nd the control that will steer the
initial point to the origin. The equations describing the motion of a controlled
elliptic pendulum were constructed. They are provided below.

ÿ = −glm2ϕ+ lv1 − v2

lm1
,

ϕ̈ =
−ϕglm2(m1 +m2)− lm2v1 + (m1 +m2)v2

l2m1m2
,

(1)

where y(t) is the horizontal axis de�ection and ϕ(t) is the the deviation from
the bottom stability stance. The method of controlability function invented by
V.I. Korobov was used. Firstly, using the next change of variables:

z1 = ϕ, z2 = ϕ̇, z3 = y, z4 = ẏ (2)

we've transformed the 2-dimensional system into the linear 4-dimensional system.
After that, we have transformed it to the canonical system using the linear change
of variables x = Lz. Using abovementioned method, bounded control that stops
the oscillation of this mechanical system was constructed. The controllabiblity
function Θ(x) is de�ned as a unique positive solution of the equation

2a0Θ
4 = 36x2

1 + 24Θx1x2 + 6Θ2x2
2 + 36x2

3 + 24Θx3x4 + 6Θ2x2
4, (3)

for some a0 > 0. The next equality should be used to �nd the necessary control.

v(x) =

(
v1(x)
v2(x)

)
=

 − 6x1

Θ2(x)
− 3x2

Θ(x)

gx1 + x3
g(m1 +m2)

lm1
− 6x3

Θ2(x)
− 3x4

Θ(x)

 (4)

This control steers an arbitrary initial point of a certain neighborhood of the
origin of the coordinates to the origin in a �nite time. Graphics of the trajectory
and control on the trajectory, which begin from the chosen initial point, are
presented.

[1] Korobov V. I. The method of controllability function (Russian), R&C Dynamics, M.-Izhevsk, 2007: 1-576.
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Solutions to nonlinear systems of reaction-di�usion

equations/ ODEs with delay

Alexander Rezounenko, Kharkiv, Ukraine

We are interested in a class of systems of non-linear partial di�erential equa-
tions/ODEs with di�erent types of bounded time delays. To describe systems,
we remind the notation which is usual in the theory of delay equations. Consid-
ering the maximal delay h > 0, for a function v(t), t ∈ [a − h, b] ⊂ R, b > a,
we denote the history segment vt = vt(θ) ≡ v(t+ θ), θ ∈ [−h, 0], t ∈ [a, b].

The general form of a delay system under consideration is

d

dt
u(t) + Au(t) = F (ut), (1)

In (1), A is an unbounded linear operator in a Banach space X, F : C ≡
C([−h, 0];X) → X is a nonlinear (delay) map. The form of F depends on
particular applied problems. Initial conditions, in general, are

u|[−h,0] = ϕ ∈ C ≡ C([−h, 0];X). (2)

For particular cases, the set of initial functions ϕ could be a carefully choosen
subset (not necessarily linear) of the space C.

We are interested in reaction-di�usion systems in bounded domains with dif-
ferent types of delay in reaction terms. Particular interest is in the case of
presence of discrete state-dependent delays. This type of delay is the most rel-
evant to real-world applications and most di�cult from mathematical point of
view. For a survey on the ODE theory see [1]. The well-posedness in the sense
of Hadamard and long time asymptotic behaviour of di�erent types of solutions
to (1)-(2) are studied (see e.g. [2, 3, 4]).

[1] F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional di�erential equations with state-dependent
delays: Theory and applications, In: Canada, A., Drabek., P. and A. Fonda (Eds.) Handbook of Dif-
ferential Equations, Ordinary Di�erential Equations, Elsevier Science B.V., North Holland, 3 (2006),
435�545.

[2] A. V. Rezounenko, A condition on delay for di�erential equations with discrete state-dependent delay //
Journal of Mathematical Analysis and Applications. � 2012. � 385, � pp.506�516.

[3] A.V. Rezounenko, P. Zagalak, Non-local PDEs with discrete state-dependent delays: well-posedness in a
metric space// Discrete and Continuous Dynamical Systems-Series A. � 2013. � 33(2). � pp. 819-835.

[4] I.D. Chueshov, A.V. Rezounenko, Finite-dimensional global attractors for parabolic nonlinear equations
with state-dependent delay // Communications on Pure and Applied Analysis. � 2015. � 14/5. � pp.1685-
1704.
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Application of the method of lines to discretize

problems of controllability for the partial di�erential

equations, representing processes in power installations

Yurii Romashov, Kharkiv, Ukraine

Suitable controlling programs, providing required state parameters during an
operation in di�erent modes, must be constructed for power installations, and it
is an interesting not fully explored area for using the controllability theory.

Mathematical models of processes in power installations, including the heat
conduction and others, can be represented using partial di�erential equations.
In a point x we have a state vector y(x, t), changing during a time t ≥ 0 from
an initial state y0 in corresponding with the controlling program, represented
by a vector u(t), properties of the process in a domain Ω and an environment
in�uence at a boundary Γ, represented by operators A(y,u) and B(y,u):

∂y/∂t = A(y, ∂y/∂x,u), y(x, 0) = y0 x ∈ Ω, B(y,u) = 0 x ∈ Γ. (1)

Mathematical model (1) is necessary to build the controlling program u(t), al-
lowing to change the initial state of the process to a given state yT during a
minimal time T under required limiting conditions, represented in an operator
C(y,u):

u(t) : y(x, T ) = yT , C(y,u) ≥ 0, T → min . (2)

To reduce the problem (1), (2), we use the spatial grid with nodes xk ∈ Ω
and nodal values yk(t) = y(xk, t), k = 1, 2, ..., n. Following the method of lines
[1], we use a �nite di�erences technique in nodes xk ∈ Ω only for the di�erential
operator ∂y/∂x and we reduce the problem (1), (2) to a view:

dȳ/dt = Ā(ȳ,u), ȳ(0) = ȳ0, u(t) : ȳ(T ) = ȳT , C̄(ȳ,u) ≥ 0, T → min, (3)

where ȳ is a vector, including the nodal values y1, y2, ..., yn
Thus, the method of lines give us the opportunities to discretize the prob-

lem of controllability for partial di�erential equations, representing processes in
power installations, and allows to reduce it to the controllability of the ordinary
di�erential equations considered, for example, in [2].

[1] Fletcher C.A.J. Computational techniques for �uid dynamics. 1 Fundamental and general techniques,
Springer-Verlag, 1988,1991: 1-401.

[2] Korobov V. I. The method of controllability function (Russian), R&C Dynamics, M.-Izhevsk, 2007: 1-576.
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The integrable nonlocal nonlinear Schr�odinger

equation: Riemann-Hilbert approach and long-time

asymptotics

Dmitry Shepelsky, Kharkiv, Ukraine
Yan Rybalko, Kharkiv, Ukraine

We study the initial value problem for the integrable nonlocal nonlinear
Schr�odinger (NNLS) equation

iqt(x, t) + qxx(x, t) + 2q2(x, t)q̄(−x, t) = 0

with decaying (as x → ±∞) boundary conditions as well as with the step-like
boundary conditions: q(x, 0)→ 0 as x→ −∞ and q(x, 0)→ A as x→ −∞,
where A 6= 0.

The main aim is to describe the long-time (t→ +∞) behavior of the solution
of these problems. To do this, we adapt the nonlinear steepest-decent method to
the study of the Riemann-Hilbert problem associated with the NNLS equation.
In the case of decaying initial data, our main result is that, in contrast to the
local NLS equation, where the main asymptotic term (in the solitonless case)
decays to 0 as O(t−1/2) along any ray x/t = const, the power decay rate in the
case of the NNLS depends, in general, on x/t, and can be expressed in terms of
the spectral functions associated with the initial data.

In the case of the step-like boundary conditions, the asymptotics turns to be
di�erent in di�erent sectors of the (x, t) plane. Particularly, in the right-most
sector, the main asymptotic terms is a constant depending on the ratio x/t
whereas the second term decays, as in the previous case, with the power decay
rate depending on x/t.

Vanishing of solution of the model representative of

NPE

Kateryna Stiepanova, Kharkiv, Ukraine

The theory of quasilinear parabolic equations has been developed since the
50-s of the 19th century. The properties of these equations di�er greatly from
those of linear equations. These di�erences were revealed in the scienti�c papers
of the mathematicians: Barenblatt G.I., Oleinic O.A., Kalashnikov A.S., Zhou
Yu Lin and others. Speci�c properties of NE (inertia, strongweaked localization
of solutions' supports, extinction...) were studied by J.I. Diaz, L. Veron, A.E.
Shishkov, B. Hel�er, Y. Belaud, D. Andreucci and others. The most important
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aspect of such investigations is the description of structural conditions a�ecting
the appearance and disappearance of various non-linear phenomena. Our inves-
tigation deals with nonlinear parabolic equation with degenerating absorption
potential h(t), the presence of which play the important role in the study of the
above mentioned properties.

So, we study Cauchy-Neumann problem for the next type of a quasilinear
parabolic equation with the model representative:

ut −∆u+ h(t)|u|q−1 u = 0 inΩ× (0, T ) (1)

∂u

∂n
|∂Ω×[0,T ] = 0 (2)

u(x, 0) = u0(x), RN\{suppu0} 6= ∅, {suppu0} ⊂ {|x| < 1} (3)

Here 0 < q < 1, the initial function u0(x) ∈ L2(Ω), Ω ⊂ RN(N > 1) be a
bounded domain with C1 - boundary. Assume that h(t) is a continuous, non-

negative, nondecreasing function, such that h(0) = 0. Let h(t) = exp(−ω(t)
t ),

where ω(t) satis�es following technical conditions: (A) ω(t) > 0 ∀ t > 0, (B)

ω(0) = 0, (C) t ω′(t)
ω(t) ≤ 1− δ ∀ t ∈ (0, t0), t0 > 0, 0 < δ < 1.

Theorem 1. Let be an arbitrary function from L2(Ω), ω(t) is continuous and
nondecreasing function satisfy assumptions (A)(B)(C), then an arbitrary solution
u(x, t) of the problem (1)(2)(3) vanishes on Ω in some �nite time T <∞.

To prove that, we use local energy method, which deals with norms of solu-
tions u(x, t) only and, therefore, may applied for higher order equations too.
Acknowledgment. Author is very grateful to organizers of the International
Conference "Di�erential Equations and Control Theory - 2018" for hospitality.

One optimal control problem for an unmanned aerial

vehicle

Yuliia Sukhinina, Kharkiv, Ukraine
Svetlana Ignatovich, Kharkiv, Ukraine

The papers [1, 2] deal with one problem of minimizing the time for a kine-
matic model of unmanned aerial vehicle moving at a constant altitude. From
a kinematic point of view, an UAV �ying at a constant altitude is determined
by standard Dubins equations [3]. Under additional speed constraints, the �ight
model of a drone is described by the following system of di�erential equations:

ẋ = cos θ, ẏ = sin θ, θ̇ = u, (1)
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with (x, y, θ) ∈ R2 × S1 (where (x, y) ∈ R2 is UAV coordinates in the plane of
constant height, θ is the angle of deviation from the course) and the control u ∈
[−1, 1]. In [1, 2] this (and more general) time-optimal problem was considered
with the following �nal conditions: the UAV steers to the circle of radius 1
centered at the origin and then moves along it clockwise. Due to such �nal
conditions, choosing a new basis (x̃, ỹ, θ) one can simplify the system and obtain
the two-dimensional time-optimal control problem:{

˙̃x = 1 + u · ỹ
˙̃y = −u · x̃

(2)

|u| ≤ 1, x̃(t0) = x̃0, ỹ(t0) = ỹ0, x̃(t1) = 0, ỹ(t1) = 1. (3)

The solution of this time-optimal control problem is rather complicated [1].
But it turns out that if the both choice of the direction of motion along the

�nal circle is allowed (this corresponds to the time-optimal control problem (2)
with two endpoints (0,−1) and (0, 1)), then the solution of the time-optimal
control problem is essentially simpli�ed. In this paper, we describe the optimal
synthesis and give examples of motion with various initial conditions.

[1] Maillot T., Boscain U., Gauthier J.-P., Serres U. Lyapunov and minimum-time path planning for drones
// J. Dyn. Control Syst. � 2015. � V. 21. � P. 47-80.

[2] Lagache M.-A., Serres U., Andrieu V. Minimal time synthesis for a kinematic drone model // Math.
Control and Related Fields. � 2017. � 7(2). � P. 259-288.

[3] Agrachev A. A., Sachkov Yu. L. Control Theory from the Geometric Viewpoint. � Springer-Verlag Berlin
Heidelberg, 2004. � 412 p.

Control and stabilizability of rotating Timoshenko

beam with the aid of the torque

Grzegorz Szkibiel, Szczecin, Poland

We consider the following system of equations depicting the rotating Timo-
shenko beam:

%(x)ẅ(x, t)− (K(x)(w′(x, t) + ξ(x, t))′ = −%(x)(x+ r)θ̈(t)

R(x)ξ̈(x, t)− (E(x)ξ′(x, t))′ +K(x)(w′(x, t) + ξ(x, t)) = R(x)θ̈(t).

The beam is clamped to a rotating disc propelled by an engine. We denote by
r the radius of the disc and by θ = θ(t), the rotation angle (t > 0). To a
(uniform) cross section of the beam at a point x, 0 6 x 6 1, we assign the
following values: E(x) � �exural rigidity, K(x) � shear sti�ness, %(x) � mass of
the cross section, R(x) � rotary inertia. E, K, % and R are the real functions
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de�ned on [0, 1] and bounded by two positive constants. Also, we assume they
are twice di�erentiable with bounded derivatives. By w(x, t) we understand the
de�ection of the center line of the beam and ξ(x, t) is the rotation angle of the
cross section area at the location x and at the time t.

Assuming there is no deformation at the clamped end, as a consequence of
the energy balance law, we obtain the following boundary conditions:

w(0, t) = ξ(0, t) = 0

w′(1, t) + ξ(1, t) = ξ′(1, t) = 0.

for all t > 0. The control function u is the angular acceleration (u(t) = θ̈(t)).

Let Id denote the disc inertia. The control ū with the aid of the torque is
given by the equation

ū(t) = Idθ̈(t)

+

∫ 1

0

%(x)(x+ r)
(
ẅ(x, t) + (x+ r)θ̈(t)

)
dx

−
∫ 1

0

R(x)
(
ξ̈(x, t)− θ̈(t)

)
dx.

We will de�ne and demonstrate solutions of various problems connected with
controllability and stabilizability of the introduced model.

[1] Sklyar G.M., Szkibiel G. Spectral properties of non-homogeneous Timoshenko beam and its controllability,
Mekh. Tverd. Tela No. 37(2007), 175-183;

[2] Sklyar G.M., Szkibiel G. Spectral properties of non-homogeneous Timoshenko beam and its rest to rest
controllability, J. Math. Anal. Appl. 338(2008),1054-1069;

[3] Sklyar G.M., Szkibiel G. The control of non-homogeneous Timoshenko Beam from the state of rest to
arbitrary position, Mat. Analiz i Geometria 2008, v.4, No 2, p. 305-318,

[4] Sklyar G.M., Szkibiel G. Controlling of non-homogeneous Timoshenko beam with the aid of the torque,
Int. J. Appl. Math. Comput. Sci. 2013 Vol. 23, No. 3, 587-598.

Nano�uidic �ows in the tubes and minimum entropy

generation principle

Yevgen Tkachenko, Kharkov, Ukraine
Nataliya Kizilova, Kharkov, Ukraine

Flows of the suspensions of nanoparticles (d ∼ 1 − 500nm nano�uids) and
microparticles (d ∼ 1− 500mcm micro�uids) through nano/microtubes, chan-
nels and other types of ducts are governed my the Navier-Stokes equations with
velocity slip and temperature jump boundary conditions at the walls [1]. During
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the past decades numerous units and systems for mixing, puri�cation, sepa-
ration, heating and cooling of micro and nano�uids have been proposed for
technical, electrical and biomedical applications [2]. In this paper the nano�uid
�ows through a circular microtube driven by the pressure drop at the ends of the
tube, with heat exchange through the wall is studied. At some types of boundary
conditions the analytical solution for the velocity v, pressure p and temperature
T distributions can be obtained. The entropy production in the system can be
then computed as [3]

Ṡ =
1

V

∫
V

(
∇2T

T 2
+ReEuEc

v · ∇p
T

)
dV, (1)

where Re, Eu and Ec are the Reynolds, Euler and Eckert numbers, V is the
volume of the duct.

Numerical computations on (1) needs a large set of the material parame-
ters. That allows �nding out the optimal control and �ow optimization as a
relationships between the dimensionless combinations of the parameters. Some
reasonable ways to minimize the dissipation in the micro heating or cooling sys-
tem based on the nanosuspensions with certain properties are discussed.

[1] Cherevko V., Kizilova N. Complex �ows of immiscible micro�uids and nano�uids with velocity slip bounary
conditions. // Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies, Springer Proceed-
ings in Physics, � Vol. 183, O. Fesenko, L. Yatsenko (eds.). � 2017, � pp. 207-230.

[2] Gad-el-Hak M. The MEMS Handbook. Second ed. CRC Press, New York. � 2006.

[3] Kjelstrup S., Bedeoux D. Non-equilibrium thermodynamics of heterogenous systems. Ser. Advances in
Statistical Mechanics. � Vol.16. World Scienti�c Publ. � 2008.

Asymptotic analysis and optimal decay ratio of

damped slowly rotating Timoshenko beams

Jaros law Wo�zniak, Szczecin, Poland
Mateusz Firkowski, Szczecin, Poland

A stability analysis was performed in the problem of a rotating Timoshenko
beam whose movement is controlled by the angular acceleration of the driving
motor into which the beam is rigidly clamped (cf. [1]). After introducing a
damping e�ect with respect to a rotation angle of a cross section area of rotating
Timoshenko beam model, we obtain [2] the following system of two dimensionless
partial di�erential equations{

ẅ(x, t)− w′′(x, t)− ξ′(x, t) = −u(t)(r + x),

ξ̈(x, t)− γ2ξ′′(x, t) + w′(x, t) + ξ(x, t) + ν2ξ̇(x, t) = u(t),
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for x ∈ (0, 1) and t > 0, where ν is a damping constant, with boundary
conditions {

w(0, t) = ξ(0, t) = 0,
w′(1, t) + ξ(1, t) = ξ′(1, t) = 0.

Next, we show some important spectral properties of operator connected with
the system. Furthermore, we show the asymptotic stability of the system under
certain assumptions on the physical parameter γ2. We �nd the optimal damping
coe�cient, maximizing the stability margin of the system.

[1] W. Krabs, G. M. Sklyar, On Controllability Of Linear Vibrations, Nova Science Publishers Inc. 2002,
Huntington, NY.

[2] J. Wo�zniak, M. Firkowski, Optimal damping coe�cient of a slowly rotating Timoshenko beam, Proc.
SIAM Conf. Cont. Appl. � 2015. � pp. 81 - 84.

Inverse spectral problem for the operators with

non-local potential

Vladimir Zolotarev, Kharkiv, Ukraine

The main object under consideration in the presentation is the second deriva-
tive operator on a �nite interval with zero boundary conditions perturbed by
a self-adjoint integral operator with the degenerate kernel (non-local poten-
tial). The inverse problem, i. e., the reconstruction of the perturbation from
the spectral data, is solved by means of the step-by-step procedure based on the
n-interlacing property of the spectrum.

Stabilization of a nonlinear system with elastic plates

Alexander Zuyev, Magdeburg, Germany and Sloviansk, Ukraine
Julia Novikova, Pokrovsk, Ukraine

Consider a mechanical system that consists of a rigid body and two elastic
plates. The vibration of the plates is governed by the Kirchho� equations (see,
e.g., [1]):

ẅ1 + a2
1

(
∂2

∂x2
1

+
∂2

∂x2
2

)2

w1 = (x1 + d1)ω̇2 − (x2 + d2)ω̇1, (1)

ẅ2 + a2
2

(
∂2

∂x′21
+

∂2

∂x′22

)2

w2 = (x′1 + d′1)ω̇2 − (x′2 + d′2)ω̇1, (2)

subject to the boundary conditions

wj|∂Ωj = 0,
∂2wj
∂n2

∣∣∣∣
∂Ωj

= 0, j = 1, 2. (3)
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We exploit the angular momentum equations for the rigid body-carrier:

K̇ + ω ×K = f, (4)

where K = Iω + ρ1

∫
Ω1

rP × vPdx + ρ2

∫
Ω2

rK × vKdx
′, and use the Poisson

kinematic equations:

ġi1 = ω3gi2 − ω2gi3, ġi2 = ω1gi3 − ω3gi1, ġi3 = ω2gi1 − ω1gi2, i = 1, 3. (5)

We rewrite the control system (1)�(5) as an abstract di�erential equation
with respect to the state ξ in a suitable Hilbert space H and propose a feedback
law f = Gξ, so that the closed-loop system takes the form

d

dt
ξ(t) = Fξ(t), F = A+BG. (6)

Here A : D(A)→ H is unbounded nonlinear operator, B : R3 → H is bounded
linear operator, and G : H → R3.

We prove that the solution ξ = 0 of equation (6) is strongly stable in the
sense of Lyapunov.

This work was supported in part by the State Fund for Fundamental Research
of Ukraine (F75/27190).

[1] Zuyev A., Novikova J. Modeling and stabilization of a rotating mechanical system with elastic plates //
IFAC-PapersOnLine. - 2018. - Vol.51, No. 2. - P. 493-498.
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