One problem of a control system design in the class C^{1}

Daria Andreieva, Kharkiv, Ukraine

Svetlana Ignatovich, Kharkiv, Ukraine
In the paper [1] a method for constructing a controllable system was proposed for the class of real-analytic vector fields. Let $\dot{x}=f(x)$ be a system of differential equations, where $x \in \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, n>1$. The problem is to find a vector field $g(x)$ such that the system

$$
\begin{equation*}
\dot{x}=f(x)+g(x) u \tag{1}
\end{equation*}
$$

is completely controllable. The following theorem was proved in [1]:
Theorem 1. Let a system $\dot{x}=f(x)$ be given. A vector field $g(x)$, for which the system (1) is controllable, exists if and only if $f \not \equiv 0$.

The idea [1] of constructing a controllable system in the theorem is to straighten the given vector field $f(x)$, that is, to obtain $f=[0, \ldots, 1]^{T}$ and, changing variables, to obtain a linear system that we already know how to make controllable. By performing the inverse change of variables, we obtain a controllable system in the initial coordinates.

In the report, this problem is considered for finitely differentiable vector fields, in particular, for vector fields of the class C^{1}. In this case a system design problem is related to linearizability problems studied in the paper [2]. As a result, we obtain the following theorem:

Theorem 2. Let a system of differential equations

$$
\dot{x}=f(x)+g(x) u
$$

be given, where the vector field $g(x)$ is constructed according to the method described above. If the vector field $f(x)$ is of the class C^{2}, then the vector field $g(x)$ is of the class C^{1}.
[1] Kawano, Y. Any dynamical system is fully accessible through one single actuator, and related problems / Y. Kawano, Ü. Kotta, C. H. Moog // International Journal of Robust and Nonlinear Control. - 2016. - Vol. 26, no. 8. - P. 1748-1754.
[2] Sklyar, G.M. On the extension of the Korobov's class of linearizable triangular systems by nonlinear control systems of the class $C^{1} /$ G.M. Sklyar, K.V. Sklyar, S.Yu. Ignatovich / / Systems and Control Letters. - 2005. - Vol. 54. - P. 1097-1108.

