Seminonlinear matrix boundary-value problem

Sergey Chuiko, Slavyansk, Ukraine

Denis Sysoev, Slavyansk, Ukraine
We establish necessary and sufficient conditions for the existence of solutions

$$
Z(t, \varepsilon): Z(\cdot, \varepsilon) \in \mathbb{C}^{1}[a ; b], \quad Z(t, \cdot) \in \mathbb{C}\left[0 ; \varepsilon_{0}\right], \quad Z(t, \varepsilon) \in \mathbb{R}^{\alpha \times \beta}
$$

of a nonlinear matrix differential equation [1,2]

$$
\begin{equation*}
Z^{\prime}(t, \varepsilon)=A Z(t, \varepsilon)+Z(t, \varepsilon) B+F(t, \varepsilon)+\varepsilon \Phi(Z(t, \varepsilon), \mu(\varepsilon), t, \varepsilon) \tag{1}
\end{equation*}
$$

with a boundary condition

$$
\begin{equation*}
\mathcal{L} Z(\cdot, \varepsilon)=\mathcal{A}+\varepsilon J(Z(\cdot, \varepsilon), \mu(\varepsilon), \varepsilon), \quad \mathcal{A} \in \mathbb{R}^{\delta \times \gamma}, \quad \alpha \neq \beta \neq \delta \neq \gamma \tag{2}
\end{equation*}
$$

We seek the solution of the matrix boundary-value problem (1), (2) in a small neighborhood of the generating problem

$$
\begin{equation*}
Z_{0}^{\prime}(t, \varepsilon)=A Z_{0}(t, \varepsilon)+Z_{0}(t, \varepsilon) B+F(t, \varepsilon), \quad \mathcal{L} Z_{0}(\cdot, \varepsilon)=\mathcal{A} . \tag{3}
\end{equation*}
$$

Here, $A \in \mathbb{R}^{\alpha \times \alpha}$ and $B \in \mathbb{R}^{\beta \times \beta}$ are constant matrices. Assume that the nonlinear matrix operator $\Phi(Z(t, \varepsilon), \mu(\varepsilon), t, \varepsilon): \mathbb{R}^{\alpha \times \beta} \rightarrow \mathbb{R}^{\alpha \times \beta}$ is Frechet differentiable with respect to the first argument in a small neighborhood of the solution of the generating problem and continuously differentiable with respect to μ in a small neighborhood of the solution of the generating problem (3) and the initial value $\mu_{0}(\varepsilon)$ of the eigenfunction $\mu(\varepsilon)$. The nonlinearity $\Phi(Z(t, \varepsilon), \mu(\varepsilon), t, \varepsilon)$ and inhomogeneity of the generating problem $F(t, \varepsilon)$ are regarded as continuous in t on a segment $[a, b]$ and in the small parameter ε on a segment $\left[0, \varepsilon_{0}\right]$. In addition, $\mathcal{L} Z(\cdot, \varepsilon)$ is a linear bounded matrix functional: $\mathcal{L} Z(\cdot, \varepsilon): \mathbb{C}^{1}[a ; b] \rightarrow \mathbb{R}^{\delta \times \gamma}$. The nonlinear matrix functional $J(Z(\cdot, \varepsilon), \mu(\varepsilon), \varepsilon): C[a, b] \rightarrow \mathbb{R}^{m}$ is continuously differentiable with respect to Z in a small neighborhood of the solution of the generating problem (3), continuously differentiable with respect to μ in a small neighborhood of the solution of the generating problem (3) and the initial value $\mu_{0}(\varepsilon)$ of the eigenfunction $\mu(\varepsilon)$; and continuous in the small parameter ε on the segment $\left[0, \varepsilon_{0}\right]$.
[1] Boichuk A. A., Samoilenko A. M. Generalized Inverse Operators and Fredholm Boundary-value Problems 2-nd edition, Walter de Gruyter GmbH \& Co KG, 2016.
[2] Chuiko S. M., Sysoev D. V. Weakly nonlinear matrix boundary-value problem in the case of parametric resonance // Journ. of Math. Sciences. - 2017. - 223. - 3. - pp. 337-350.

