The Stieltjes matrix moment problem and associated positive symmetric operators

Yury Dyukarev

V. N. KARAZIN KHARKIV NATIONAL UNIVERSITY

Kharkiv, 2018

Yury Dyukarev The Stieltjes matrix moment problem and associated positive

The Stieltjes matrix moment problem. 1

The sequence of $m \times m$ matrices

$$s_0, s_1, \ldots, s_l, \ldots \subset \mathbb{C}^{m \times m}$$
 (1)

is called \mathbb{R}_+ -positive if all block Hankel matrices

$$H_{l}^{(l)} = \begin{pmatrix} s_{0} & \dots & s_{l} \\ \vdots & \ddots & \vdots \\ s_{l} & \dots & s_{2l} \end{pmatrix}, \quad H_{2}^{(l)} = \begin{pmatrix} s_{1} & \dots & s_{l+1} \\ \vdots & \ddots & \vdots \\ s_{l+1} & \dots & s_{2l+1} \end{pmatrix}$$

are positive Hermitian.

Consider the matrix version of the Stieltjes moment problem: Describe the set \mathcal{M}_+ of all nonnegative Hermitian $m \times m$ Borel measures σ on \mathbb{R}_+ such that

$$s_j = \int_{\mathbb{R}_+} t^j \sigma(dt), \qquad j \ge 0.$$
 (2)

Suppose the sequence (s_j) is \mathbb{R}_+ -positive; then $\mathcal{M}_{\pm} \neq \emptyset$.

Suppose $\sigma \in \mathcal{M}_+;$ then there exist two sequences of matrix polynomials

$$\left\{P_r^{(j)}(z)\right\}_{j=0}^{\infty}, \qquad r=1,2$$

such that:

1) Each polynomial $P_r^{(j)}$ is a matrix polynomial of degree j, and its leading coefficient is a positive $m \times m$ matrix.

2) For any matrix measure $\sigma \in \mathcal{M}_+$ the polynomials $\mathcal{P}_r^{(j)}$ are orthonormal

$$\int_{\mathbb{R}_+} P_r^{(j)}(t) t^{r-1} \sigma(dt) P_r^{(k)^*}(t) = \delta_{jk} I_m, \quad \delta_{jk} = \begin{cases} 1, & j=k \\ 0, & j \neq k \end{cases}$$

Jacobi matrices

The matrix polynomials $(P_r^{(j)})_{j=0}^{\infty}$ satisfy by the recurrence relation $(j \ge 1, r = 1, 2)$ $tP_r^{(j)}(z) = B_r^{(j-1)*}P_r^{(j-1)}(z) + A_r^{(j)}P_r^{(j)}(z) + B_r^{(j)}P_r^{(j+1)}(z)$ (3)

and the initial condition

$$P_r^{(0)}(z) \equiv H_r^{(0)^{-1/2}}, \quad t P_r^{(0)}(z) = A_r^{(0)} P_r^{(0)}(z) + B_r^{(0)} P_r^{(1)}(z).$$
 (4)

Here

$$A_r^{(j)}>O,\quad \det B_r^{(j)}
eq 0,\quad j\geq 0,\quad r=1,2.$$

From the coefficients of the recurrence relations we construct two infinite block Jacobi matrices

$$\mathbf{J}_{r} = \begin{pmatrix} A_{r}^{(0)} & B_{r}^{(0)} & O & O & \dots \\ B_{r}^{(0)^{*}} & A_{r}^{(1)} & B_{r}^{(1)} & O & \dots \\ O & B_{r}^{(1)^{*}} & A_{r}^{(2)} & B_{r}^{(2)} & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots \end{pmatrix}, \quad r = 1, 2.$$

Let $\ell_0^2(\mathbb{C}^m)$ be the subspace of $\ell^2(\mathbb{C}^m)$ which consists of finite vectors. We define two symmetric operators $\tilde{\mathsf{L}}_r: \ell_0^2(\mathbb{C}^m) \to \ell_0^2(\mathbb{C}^m), \ r = 1, 2$ as follows:

$$\widetilde{\mathbf{L}}_r u = \mathbf{J}_r u, \quad \forall u \in \ell_0^2(\mathbb{C}^m).$$

These operators are nonclosed symmetric operators on $\ell_0^2(\mathbb{C}^m)$. Let \mathbf{L}_r be their closures. The operators \mathbf{L}_r , r = 1, 2 will be said to be associated with the Stieltjes matrix moment problem. The subspaces

$$\mathcal{D}_r(z) = \left\{ \mathbf{u} \in \ell^2(\mathbb{C}^m) : \mathbf{L}_r^* \mathbf{u} = z \mathbf{u} \right\}, \quad r = 1, 2$$
(5)

are called the deficiency subspaces of the operators L_r at z.

Theorem

1. Symmetric operators L_r , r = 1, 2 are non-negative. 2. The dimension of the deficiency subspaces $\mathcal{D}_r(z)$ are independent of the choice of the point z from $\mathbb{C} \setminus \mathbb{R}_+$:

$$\dim \mathcal{D}_r(z_1) = \dim \mathcal{D}_r(z_2) = m_r \,\, orall z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}_+, \,\, r=1,2.$$

3. There exist subspaces $\mathcal{L}_r(z) \subset \mathbb{C}^m, \ r = 1,2$ such that the mappings

$$\phi \in \mathcal{L}_r(z) \longleftrightarrow \mathbf{u} = col(P_r^{(0)}(z), P_r^{(1)}(z), P_r^{(2)}(z), \dots) \phi \in \mathcal{D}_r(z),$$

give isomorphisms between the linear spaces $\mathcal{L}_r(z)$ and $\mathcal{D}_r(z)$. 4. The dimension of the subspaces $\mathcal{R}(z) = \mathcal{L}_1(z) \cap \mathcal{L}_2(z)$ are independent of the choice of the point z from $\mathbb{C} \setminus \mathbb{R}_+$

$$\dim \mathcal{R}(z_1) = \dim \mathcal{R}(z_2) = \delta \,\,\forall z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}_+.$$

- 4 回 ト 4 ヨト 4 ヨト

Stieltjes matrix moment problem is naturally called:

- a) completely indeterminate if $\delta = m$;
- b) completely determinate if $\delta = 0$;
- c) semi-determinate if $0 < \delta < m$.

A completely determinate or semi-determinate Stieltjes matrix moment problem will be called degenerate.

The Stieltjes criteria

Theorem

For the Stieltjes matrix moment problem to be nondegenerate, it is necessary and sufficient that the series

$$\sum_{j=0}^{\infty} P_1^{(j)^*}(x) P_1^{(j)}(x) < \infty, \quad \sum_{j=0}^{\infty} P_2^{(j)^*}(x) P_2^{(j)}(x) < \infty, \quad x \in \mathbb{R}_-$$
(6)

We have $\mathcal{L}_1(x) = \mathcal{L}_2(x) = \mathbb{C}^m$. This implies that the Stieltjes matrix moment problem is nondegenerate.

The classical Stieltjes criterion indeterminacy for the Stieltjes moment problem

$$\sum_{j=0}^{\infty} m_j < \infty, \ \sum_{j=0}^{\infty} \ell_j < \infty$$

is a special case of our theorem.

Yury Dyukarev

The Stieltjes matrix moment problem and associated positive

The Stieltjes matrix parameters.

Let the sequence (s_j) be \mathbb{R}_+ -positive. We consider the block matrices:

$$H_r^{(l)} = (s_{j+k+r})_{j,k=0}^l, \ r = 1, 2,$$

$$v^{(0)} = (I) , v^{(j)} = \begin{pmatrix} v^{(j-1)} \\ O \end{pmatrix}, u^{(0)} = (s_0), u^{(j)} = \begin{pmatrix} u^{(j-1)} \\ s_j \end{pmatrix}.$$

The positive $m \times m$ matrices

$$\begin{split} m_0 &= v^{(0)^*} H_1^{(0)^{-1}} v^{(0)} > O, \\ \ell_0 &= u^{(0)^*} H_2^{(0)^{-1}} u^{(0)} > O, \\ m_j &= v^{(j)^*} H_1^{(j)^{-1}} v^{(j)} - v^{(j-1)^*} H_1^{(j-1)^{-1}} v^{(j-1)} > O, \\ \ell_j &= u^{(j)^*} H_2^{(j)^{-1}} u^{(j)} - u^{(j-1)^*} H_2^{(j-1)^{-1}} u^{(j-1)} > O. \end{split}$$

are called the Stieltjes matrix parameters.

Hamburger's theorem

Theorem

Let $(s_j)_{j=0}^{\infty}$ be an \mathbb{R}_+ -positive sequence and $z \in \mathbb{C} \setminus \mathbb{R}_+$. For the Hamburger moment problem $s_j = \int_{\mathbb{R}} t^j \sigma(dt), \quad j \ge 0$

to be nondegenerate and for the Stieltjes moment problem

$$s_j = \int_{\mathbb{R}_+} t^j au(dt), \quad j \geq 0$$

to be degenerate, it is necessary and sufficient that the series

$$\sum_{j=0}^{\infty} P_1^{(j)^*}(z) P_1^{(j)}(z) \qquad be \ convergent$$
(7)

and the series

$$\sum_{j=0}^{\infty} P_2^{(j)^*}(z) P_2^{(j)}(z) \qquad be \ divergent. \tag{8}$$

Hamburger's theorem

We have

$$\mathcal{L}_1(z) = \mathbb{C}^m, \ \mathcal{L}_2(z) \subset \mathbb{C}^m, \ \dim \mathcal{L}_2(z) = m_2 < m;$$

It now follows that

$$\mathcal{R}(z) = \mathcal{L}_1(z) \cap \mathcal{L}_2(z) = \mathcal{L}_2(z)$$

and

$$\dim \mathcal{R}(z) = \dim \mathcal{L}_2(z) = m_2 < m.$$

This implies that the Stieltjes matrix moment problem is degenerate.

The classical Hamburger's theorem

$$\sum_{j=1}^{\infty} (\ell_0 + \ell_1 + \ldots + \ell_{j-1})^* m_j (\ell_0 + \ell_1 + \ldots + \ell_{j-1}) < \infty, \qquad \sum_{j=0}^{\infty} \ell_j > \infty$$

is a special case of our theorem.

The Stieltjes matrix moment problem and associated positive