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The Stieltjes matrix moment problem. 1

The sequence of m ×m matrices

s0, s1, . . . , sl , . . . ⊂ Cm×m (1)

is called R+-positive if all block Hankel matrices

H
(l)
l =

 s0 . . . sl
...

. . .
...

sl . . . s2l

 , H
(l)
2 =

 s1 . . . sl+1
...

. . .
...

sl+1 . . . s2l+1


are positive Hermitian.
Consider the matrix version of the Stieltjes moment problem:
Describe the set M+ of all nonnegative Hermitian m ×m Borel
measures σ on R+ such that

sj =

∫
R+

t jσ(dt), j ≥ 0. (2)

Suppose the sequence (sj) is R+-positive; then M+ 6= ∅.
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Matrix polynomials

Suppose σ ∈M+; then there exist two sequences of matrix
polynomials {

P
(j)
r (z)

}∞
j=0

, r = 1, 2

such that:
1) Each polynomial P

(j)
r is a matrix polynomial of degree j , and its

leading coefficient is a positive m ×m matrix.

2) For any matrix measure σ ∈M+ the polynomials P
(j)
r are

orthonormal∫
R+

P
(j)
r (t)tr−1σ(dt)P

(k)∗
r (t) = δjk Im, δjk =

{
1, j = k
0, j 6= k
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Jacobi matrices

The matrix polynomials
(
P
(j)
r

)∞
j=0

satisfy by the recurrence relation

(j ≥ 1, r = 1, 2)

tP
(j)
r (z) = B

(j−1)∗
r P

(j−1)
r (z) + A

(j)
r P

(j)
r (z) + B

(j)
r P

(j+1)
r (z) (3)

and the initial condition

P
(0)
r (z) ≡ H

(0)−1/2

r , tP
(0)
r (z) = A

(0)
r P

(0)
r (z) + B

(0)
r P

(1)
r (z). (4)

Here
A
(j)
r > O, detB

(j)
r 6= 0, j ≥ 0, r = 1, 2.

From the coefficients of the recurrence relations we construct two
infinite block Jacobi matrices

Jr =


A
(0)
r B

(0)
r O O . . .

B
(0)∗
r A

(1)
r B

(1)
r O . . .

O B
(1)∗
r A

(2)
r B

(2)
r . . .

...
...

. . .
. . .

. . .

 , r = 1, 2.
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Associated Operators

Let `20(Cm) be the subspace of `2(Cm) which consists of finite
vectors. We define two symmetric operators
L̃r : `20(Cm)→ `20(Cm), r = 1, 2 as follows:

L̃ru = Jru, ∀u ∈ `20(Cm).

These operators are nonclosed symmetric operators on `20(Cm).
Let Lr be their closures. The operators Lr , r = 1, 2 will be said to
be associated with the Stieltjes matrix moment problem.
The subspaces

Dr (z) =
{
u ∈ `2(Cm) : L∗r u = zu

}
, r = 1, 2 (5)

are called the deficiency subspaces of the operators Lr at z .
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Theorem

1. Symmetric operators Lr , r = 1, 2 are non-negative.
2. The dimension of the deficiency subspaces Dr (z) are
independent of the choice of the point z from C \ R+:

dimDr (z1) = dimDr (z2) = mr ∀z1, z2 ∈ C \ R+, r = 1, 2.

3. There exist subspaces Lr (z) ⊂ Cm, r = 1, 2 such that the
mappings

φ ∈ Lr (z)←→ u = col
(
P
(0)
r (z),P

(1)
r (z),P

(2)
r (z), . . .

)
φ ∈ Dr (z),

give isomorphisms between the linear spaces Lr (z) and Dr (z).
4. The dimension of the subspaces R(z) = L1(z) ∩ L2(z) are
independent of the choice of the point z from C \ R+

dimR(z1) = dimR(z2) = δ ∀z1, z2 ∈ C \ R+.
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Stieltjes matrix moment problem is naturally called:

a) completely indeterminate if δ = m;

b) completely determinate if δ = 0;

c) semi-determinate if 0 < δ < m.

A completely determinate or semi-determinate Stieltjes matrix
moment problem will be called degenerate.
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The Stieltjes criteria

Theorem

For the Stieltjes matrix moment problem to be nondegenerate, it is
necessary and sufficient that the series

∞∑
j=0

P
(j)∗

1 (x)P
(j)
1 (x) <∞,

∞∑
j=0

P
(j)∗

2 (x)P
(j)
2 (x) <∞, x ∈ R−

(6)
be convergent.

We have L1(x) = L2(x) = Cm. This implies that the Stieltjes
matrix moment problem is nondegenerate.
The classical Stieltjes criterion indeterminacy for the Stieltjes
moment problem

∞∑
j=0

mj <∞,
∞∑
j=0

`j <∞

is a special case of our theorem.
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The Stieltjes matrix parameters.

Let the sequence (sj) be R+-positive. We consider the block
matrices:

H
(l)
r = (sj+k+r )lj ,k=0, r = 1, 2,

v (0) = (I ) , v (j) =

(
v (j−1)

O

)
, u(0) = (s0), u(j) =

(
u(j−1)

sj

)
.

The positive m ×m matrices

m0 = v (0)
∗
H

(0)−1

1 v (0) > O,

`0 = u(0)
∗
H

(0)−1

2 u(0) > O,

mj = v (j)
∗
H

(j)−1

1 v (j) − v (j−1)
∗
H

(j−1)−1

1 v (j−1) > O,

`j = u(j)
∗
H

(j)−1

2 u(j) − u(j−1)
∗
H

(j−1)−1

2 u(j−1) > O.

are called the Stieltjes matrix parameters.
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Hamburger’s theorem

Theorem

Let (sj)
∞
j=0 be an R+-positive sequence and z ∈ C \ R+.

For the Hamburger moment problem
sj =

∫
R t jσ(dt), j ≥ 0

to be nondegenerate and for the Stieltjes moment problem

sj =
∫
R+

t jτ(dt), j ≥ 0

to be degenerate, it is necessary and sufficient that the series

∞∑
j=0

P
(j)∗

1 (z)P
(j)
1 (z) be convergent (7)

and the series

∞∑
j=0

P
(j)∗

2 (z)P
(j)
2 (z) be divergent. (8)
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Hamburger’s theorem

We have

L1(z) = Cm, L2(z) ⊂ Cm, dimL2(z) = m2 < m;

It now follows that

R(z) = L1(z) ∩ L2(z) = L2(z)

and
dimR(z) = dimL2(z) = m2 < m.

This implies that the Stieltjes matrix moment problem is
degenerate.
The classical Hamburger’s theorem

∞∑
j=1

(`0+`1+. . .+`j−1)∗mj (`0+`1+. . .+`j−1) <∞,
∞∑
j=0

`j >∞.

is a special case of our theorem.
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