The Stielties matrix moment problem and associated positive symmetric operators

Yury Dyukarev

V. N. KARAZIN KHARKIV NATIONAL UNIVERSITY

Kharkiv, 2018

The Stieltjes matrix moment problem. 1

The sequence of $m \times m$ matrices

$$
\begin{equation*}
s_{0}, s_{1}, \ldots, s_{l}, \ldots \subset \mathbb{C}^{m \times m} \tag{1}
\end{equation*}
$$

is called \mathbb{R}_{+}-positive if all block Hankel matrices

$$
H_{l}^{(I)}=\left(\begin{array}{ccc}
s_{0} & \ldots & s_{I} \\
\vdots & \ddots & \vdots \\
s_{l} & \ldots & s_{2 I}
\end{array}\right), \quad H_{2}^{(I)}=\left(\begin{array}{ccc}
s_{1} & \ldots & s_{I+1} \\
\vdots & \ddots & \vdots \\
s_{l+1} & \ldots & s_{2 I+1}
\end{array}\right)
$$

are positive Hermitian.
Consider the matrix version of the Stieltjes moment problem: Describe the set \mathcal{M}_{+}of all nonnegative Hermitian $m \times m$ Borel measures σ on \mathbb{R}_{+}such that

$$
\begin{equation*}
s_{j}=\int_{\mathbb{R}_{+}} t^{j} \sigma(d t), \quad j \geq 0 \tag{2}
\end{equation*}
$$

Suppose the sequence $\left(s_{j}\right)$ is \mathbb{R}_{+}-positive; then $\mathcal{M}_{+} \neq \varnothing$.

Matrix polynomials

Suppose $\sigma \in \mathcal{M}_{+}$; then there exist two sequences of matrix polynomials

$$
\left\{P_{r}^{(j)}(z)\right\}_{j=0}^{\infty}, \quad r=1,2
$$

such that:

1) Each polynomial $P_{r}^{(j)}$ is a matrix polynomial of degree j, and its leading coefficient is a positive $m \times m$ matrix.
2) For any matrix measure $\sigma \in \mathcal{M}_{+}$the polynomials $P_{r}^{(j)}$ are orthonormal

$$
\int_{\mathbb{R}_{+}} P_{r}^{(j)}(t) t^{r-1} \sigma(d t) P_{r}^{(k)^{*}}(t)=\delta_{j k} I_{m}, \quad \delta_{j k}= \begin{cases}1, & j=k \\ 0, & j \neq k\end{cases}
$$

The matrix polynomials $\left(P_{r}^{(j)}\right)_{j=0}^{\infty}$ satisfy by the recurrence relation $(j \geq 1, r=1,2)$

$$
\begin{equation*}
t P_{r}^{(j)}(z)=B_{r}^{(j-1)^{*}} P_{r}^{(j-1)}(z)+A_{r}^{(j)} P_{r}^{(j)}(z)+B_{r}^{(j)} P_{r}^{(j+1)}(z) \tag{3}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
P_{r}^{(0)}(z) \equiv H_{r}^{(0)^{-1 / 2}}, \quad t P_{r}^{(0)}(z)=A_{r}^{(0)} P_{r}^{(0)}(z)+B_{r}^{(0)} P_{r}^{(1)}(z) \tag{4}
\end{equation*}
$$

Here

$$
A_{r}^{(j)}>O, \quad \operatorname{det} B_{r}^{(j)} \neq 0, \quad j \geq 0, \quad r=1,2
$$

From the coefficients of the recurrence relations we construct two infinite block Jacobi matrices

$$
\mathbf{J}_{r}=\left(\begin{array}{ccccc}
A_{r}^{(0)} & B_{r}^{(0)} & O & O & \ldots \\
B_{r}^{(0)^{*}} & A_{r}^{(1)} & B_{r}^{(1)} & O & \ldots \\
O & B_{r}^{(1)^{*}} & A_{r}^{(2)} & B_{r}^{(2)} & \ldots \\
\vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right), \quad r=1,2 .
$$

Associated Operators

Let $\ell_{0}^{2}\left(\mathbb{C}^{m}\right)$ be the subspace of $\ell^{2}\left(\mathbb{C}^{m}\right)$ which consists of finite vectors. We define two symmetric operators $\tilde{\mathbf{L}}_{r}: \ell_{0}^{2}\left(\mathbb{C}^{m}\right) \rightarrow \ell_{0}^{2}\left(\mathbb{C}^{m}\right), r=1,2$ as follows:

$$
\tilde{\mathbf{L}}_{r} u=\mathbf{J}_{r} u, \quad \forall u \in \ell_{0}^{2}\left(\mathbb{C}^{m}\right)
$$

These operators are nonclosed symmetric operators on $\ell_{0}^{2}\left(\mathbb{C}^{m}\right)$. Let \mathbf{L}_{r} be their closures. The operators $\mathbf{L}_{r}, r=1,2$ will be said to be associated with the Stieltjes matrix moment problem. The subspaces

$$
\begin{equation*}
\mathcal{D}_{r}(z)=\left\{\mathbf{u} \in \ell^{2}\left(\mathbb{C}^{m}\right): \mathbf{L}_{r}^{*} \mathbf{u}=z \mathbf{u}\right\}, \quad r=1,2 \tag{5}
\end{equation*}
$$

are called the deficiency subspaces of the operators \mathbf{L}_{r} at z.

Theorem

1. Symmetric operators $\mathbf{L}_{r}, r=1,2$ are non-negative.
2. The dimension of the deficiency subspaces $\mathcal{D}_{r}(z)$ are independent of the choice of the point z from $\mathbb{C} \backslash \mathbb{R}_{+}$:

$$
\operatorname{dim} \mathcal{D}_{r}\left(z_{1}\right)=\operatorname{dim} \mathcal{D}_{r}\left(z_{2}\right)=m_{r} \forall z_{1}, z_{2} \in \mathbb{C} \backslash \mathbb{R}_{+}, r=1,2
$$

3. There exist subspaces $\mathcal{L}_{r}(z) \subset \mathbb{C}^{m}, r=1,2$ such that the mappings

$$
\phi \in \mathcal{L}_{r}(z) \longleftrightarrow \mathbf{u}=\operatorname{col}\left(P_{r}^{(0)}(z), P_{r}^{(1)}(z), P_{r}^{(2)}(z), \ldots\right) \phi \in \mathcal{D}_{r}(z)
$$

give isomorphisms between the linear spaces $\mathcal{L}_{r}(z)$ and $\mathcal{D}_{r}(z)$. 4. The dimension of the subspaces $\mathcal{R}(z)=\mathcal{L}_{1}(z) \cap \mathcal{L}_{2}(z)$ are independent of the choice of the point z from $\mathbb{C} \backslash \mathbb{R}_{+}$

$$
\operatorname{dim} \mathcal{R}\left(z_{1}\right)=\operatorname{dim} \mathcal{R}\left(z_{2}\right)=\delta \forall z_{1}, z_{2} \in \mathbb{C} \backslash \mathbb{R}_{+}
$$

Stieltjes matrix moment problem is naturally called:
a) completely indeterminate if $\delta=m$;
b) completely determinate if $\delta=0$;
c) semi-determinate if $0<\delta<m$.

A completely determinate or semi-determinate Stieltjes matrix moment problem will be called degenerate.

The Stielties criteria

Theorem

For the Stieltjes matrix moment problem to be nondegenerate, it is necessary and sufficient that the series

$$
\begin{equation*}
\sum_{j=0}^{\infty} P_{1}^{(j)^{*}}(x) P_{1}^{(j)}(x)<\infty, \quad \sum_{j=0}^{\infty} P_{2}^{(j)^{*}}(x) P_{2}^{(j)}(x)<\infty, \quad x \in \mathbb{R}_{-} \tag{6}
\end{equation*}
$$

be convergent.
We have $\mathcal{L}_{1}(x)=\mathcal{L}_{2}(x)=\mathbb{C}^{m}$. This implies that the Stieltjes matrix moment problem is nondegenerate.
The classical Stieltjes criterion indeterminacy for the Stieltjes moment problem

$$
\sum_{j=0}^{\infty} m_{j}<\infty, \sum_{j=0}^{\infty} \ell_{j}<\infty
$$

is a special case of our theorem.

The Stieltjes matrix parameters.

Let the sequence $\left(s_{j}\right)$ be \mathbb{R}_{+}-positive. We consider the block matrices:

$$
\begin{gathered}
H_{r}^{(I)}=\left(s_{j+k+r}\right)_{j, k=0}^{\prime}, r=1,2 \\
v^{(0)}=(I), v^{(j)}=\binom{v^{(j-1)}}{O}, u^{(0)}=\left(s_{0}\right), u^{(j)}=\binom{u^{(j-1)}}{s_{j}} .
\end{gathered}
$$

The positive $m \times m$ matrices

$$
\begin{aligned}
& m_{0}=v^{(0)^{*}} H_{1}^{(0)^{-1}} v^{(0)}>O \\
& \ell_{0}=u^{(0)^{*}} H_{2}^{(0)^{-1}} u^{(0)}>O \\
& m_{j}=v^{(j)^{*}} H_{1}^{(j)^{-1}} v^{(j)}-v^{(j-1)^{*}} H_{1}^{(j-1)^{-1}} v^{(j-1)}>O \\
& \ell_{j}=u^{(j)^{*}} H_{2}^{(j)^{-1}} u^{(j)}-u^{(j-1)^{*}} H_{2}^{(j-1)^{-1}} u^{(j-1)}>O .
\end{aligned}
$$

are called the Stieltjes matrix parameters.

Hamburger's theorem

Theorem

Let $\left(s_{j}\right)_{j=0}^{\infty}$ be an \mathbb{R}_{+}-positive sequence and $z \in \mathbb{C} \backslash \mathbb{R}_{+}$.
For the Hamburger moment problem

$$
s_{j}=\int_{\mathbb{R}} t^{j} \sigma(d t), \quad j \geq 0
$$

to be nondegenerate and for the Stieltjes moment problem

$$
s_{j}=\int_{\mathbb{R}_{+}} t^{j} \tau(d t), \quad j \geq 0
$$

to be degenerate, it is necessary and sufficient that the series

$$
\sum_{j=0}^{\infty} P_{1}^{(j)^{*}}(z) P_{1}^{(j)}(z) \quad \text { be convergent }
$$

and the series

$$
\sum_{j=0}^{\infty} P_{2}^{(j)^{*}}(z) P_{2}^{(j)}(z) \quad \text { be divergent }
$$

Hamburger's theorem

We have

$$
\mathcal{L}_{1}(z)=\mathbb{C}^{m}, \mathcal{L}_{2}(z) \subset \mathbb{C}^{m}, \operatorname{dim} \mathcal{L}_{2}(z)=m_{2}<m ;
$$

It now follows that

$$
\mathcal{R}(z)=\mathcal{L}_{1}(z) \cap \mathcal{L}_{2}(z)=\mathcal{L}_{2}(z)
$$

and

$$
\operatorname{dim} \mathcal{R}(z)=\operatorname{dim} \mathcal{L}_{2}(z)=m_{2}<m
$$

This implies that the Stieltjes matrix moment problem is degenerate.
The classical Hamburger's theorem
$\sum_{j=1}^{\infty}\left(\ell_{0}+\ell_{1}+\ldots+\ell_{j-1}\right)^{*} m_{j}\left(\ell_{0}+\ell_{1}+\ldots+\ell_{j-1}\right)<\infty, \quad \sum_{j=0}^{\infty} \ell_{j}>\infty$.
is a special case of our theorem.

