Controllability problems for the heat equation on a half-axis

Larissa Fardigola, Kharkiv, Ukraine Kateryna Khalina, Kharkiv, Ukraine

Consider the heat equation

$$w_t(x,t) = w_{xx}(x,t), \quad x \in (0,+\infty), \ w(0,t) = u(t),$$
 (1)

controlled by the boundary condition

$$w(0,t) = u(t), \quad t \in (0,T),$$
(2)

under the initial condition

$$w(x,0) = w^0(x), \quad x \in (0,+\infty),$$
 (3)

where T > 0 is given, $u \in L^{\infty}(0, T)$ is the control, the state $w(\cdot, t), t \in (0, T)$, and the initial state w^0 belong to the space $H^0(0, +\infty)$ of the Sobolev type.

A state $w^0 \in H^0(0, +\infty)$ is called approximately controllable at a given time T if for any $w^T \in H^0(0, +\infty)$ and for any $\varepsilon > 0$ there exists a control $u_{\varepsilon} \in L^{\infty}(0,T)$ such that for the solution w_{ε} to system (1)–(3) with $u = u_{\varepsilon}$ we have $||w^T - w_{\varepsilon}(\cdot,T)|| < \varepsilon$.

In the talk, it is shown that each state $w^0 \in H^0(0, +\infty)$ is approximately controllable at a given time T. The controls solving the approximate controllability problems are constructed.

For a state $w^0 \in H^0(0, +\infty)$, by $\mathcal{R}^1_T(w^0)$ denote a set of states $w^T \in H^0(0, +\infty)$ for which there exists a control $u \in L^\infty(0, T)$, $0 \le u(t) \le 1$, $t \in (0, T)$, such that for the solution w to system (1)–(3) we have $w(\cdot, T) = w^T$.

For states $w^0, w^T \in H^0(0, +\infty)$, we obtain necessary and sufficient conditions for $w^T \in \mathcal{R}^1_T(w^0)$. Under these conditions, using the Markov power moment problem, it is constructed a sequence $\{u_n\}_{n=1}^{\infty}$ of bang-bang controls $(u(t) \in \{0, 1\}, t \in (0, T))$ such that for the solution w to system (1)-(3) with $u = u_n$ we have $||w_n(\cdot, T) - w^T|| \to 0$ as $n \to \infty$.

These results are illustrated by examples.