Linear operator-differential equation with generalized quasipolinomial on the right-hand side

Sergey Gefter, Kharkiv, Ukraine
Aleksey Piven', Kharkiv, Ukraine
We consider the Cauchy problem

$$
\begin{align*}
u^{\prime}(z)= & A u(z)+e^{\gamma z} f(z), \quad z \in \mathbb{C} . \tag{1}\\
& u(0)=b \in D(A), \tag{2}
\end{align*}
$$

where A is a closed operator on a complex Banach space X with a domain $D(A)(D(A)$ is not necessarily dense in $X), \gamma \in \mathbb{C}$ and $f: \mathbb{C} \rightarrow X$ is an entire vector-valued function of zero exponential type.

Theorem 1. If γ is a regular point of the operator A, then Equation (1) has the following unique solution of the form $e^{\gamma z} v(z)$, where $v(z)$ is an entire vector-valued function of zero exponential type,

$$
u(z)=-e^{\gamma z} \sum_{n=0}^{\infty}(A-\gamma I)^{-(n+1)} f^{(n)}(z) .
$$

Thus, the Cauchy problem (1), (2) has a solution of the above form if and only if $b=-\sum_{n=0}^{\infty}(A-\gamma I)^{-(n+1)} f^{(n)}(0)$.

Now, we assume that γ is an isolated point of the spectrum of A. We introduce the spectral projection P_{γ} corresponding to γ and expand the operator $A=A_{\gamma} \dot{+} \widetilde{A}_{\gamma}$ with respect to the direct sum $X=X_{\gamma} \dot{+} \widetilde{X}_{\gamma}, \quad X_{\gamma}=$ $P_{\gamma}(X), \widetilde{X}_{\gamma}=\left(I-P_{\gamma}\right)(X)$.

Theorem 2. If the operator $A-\gamma I$ is not quasinilpotent, then the Cauchy problem (1), (2) has a solution of the form $e^{\gamma z} v(z)$, where $v(z)$ is an entire vector-valued function of zero exponential type if and only if

$$
\left(I-P_{\gamma}\right) b=-\sum_{n=0}^{\infty}\left(\tilde{A}_{\gamma}-\gamma I\right)^{-(n+1)}\left(I-P_{\gamma}\right) f^{(n)}(0) .
$$

Moreover, such a solution is unique and admits the representation

$$
\begin{gathered}
u(z)=e^{z A_{\gamma}} P_{\gamma} b+\int_{0}^{z} e^{\gamma \zeta} e^{(z-\zeta) A_{\gamma}} P_{\gamma} f(\zeta) d \zeta- \\
-e^{\gamma z} \sum_{n=0}^{\infty}\left(\widetilde{A}_{\gamma}-\gamma I\right)^{-(n+1)}\left(I-P_{\gamma}\right) f^{(n)}(z)
\end{gathered}
$$

