Feedback synthesis for motion of a material point with allowance for friction

Valery Korobov, Kharkiv, Ukraine
Tetiana Revina, Kharkiv, Ukraine

Let us consider the feedback synthesis for motion of material point with allowance for friction:

$$
\begin{equation*}
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\binom{x_{2}}{p\left(t, x_{1}, x_{2}\right) x_{2}+u} . \tag{1}
\end{equation*}
$$

Here $t \geq 0,\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ is a state; u is a scalar control, $|u| \leq 1 ; p\left(t, x_{1}, x_{2}\right)$ is unknown nonlinear viscous friction, $p_{1} \leq p\left(t, x_{1}, x_{2}\right) \leq p_{2}$. The approach presented in the talk is based on the controllability function method proposed by V.I. Korobov in 1979. In [1] a control $u(x)$ solving the feedback synthesis problem for system (1) without friction was given. It satisfies two conditions:

1) $|u(x)| \leq 1 ; 2)$ the trajectory $x(t)$ starting from an initial point $x(0)=x_{0} \in \mathbb{R}^{2}$ of the closed system $\binom{\dot{x}_{1}}{\dot{x}_{2}}=\binom{x_{2}}{u(x)}$ ends at the origin at a finite time $T>0$, and, in addition, the time T is equal to $\Theta\left(x_{0}\right)$ for any $x_{0} \in \mathbb{R}^{2}$.

The main goal of the research is to find friction limits such that a control steering the system without friction to the origin also steers the system with friction to the same target.

Theorem 1. Let $a_{1}<-4.5,0<\gamma_{1}<1, \gamma_{2}>1, c>0$. The controllability function $\Theta=\Theta\left(x_{1}, x_{2}\right)$ is defined for $x \neq 0$ as a unique positive solution of the equation

$$
\begin{array}{rlrl}
\frac{\left(4+a_{1}\right) \Theta^{4}}{a_{1}\left(3+a_{1}\right)}-a_{1} x_{1}^{2}+4 \Theta x_{1} x_{2} & +\Theta^{2} x_{2}^{2}=0 . \tag{2}\\
\text { Let } Q & =\left\{\left(x_{1}, x_{2}\right) \mid \Theta\left(x_{1}, x_{2}\right) \leq c\right\}, & u(x) & =\frac{a_{1} x_{1}}{\Theta^{2}\left(x_{1}, x_{2}\right)}-\frac{3 x_{1}}{\Theta\left(x_{1}, x_{2}\right)}, \\
p_{1}^{0} & =\max \left\{\left(1-\gamma_{1}\right) \tilde{p}_{1}^{0} ;\left(1-\gamma_{2}\right) \tilde{p}_{2}^{0}\right\}, & p_{2}^{0} & =\min \left\{\left(1-\gamma_{1}\right) \tilde{p}_{2}^{0} ;\left(1-\gamma_{2}\right) \tilde{p}_{1}^{0}\right\}, \\
\tilde{p}_{1}^{0} & =\frac{3+a_{1}-\sqrt{a_{1}\left(a_{1}+4\right)}}{c}, & \tilde{p}_{2}^{0} & =\frac{3+a_{1}+\sqrt{a_{1}\left(a_{1}+4\right)}}{c} .
\end{array}
$$

Then, for all $p_{1} \leq p\left(t, x_{1}, x_{2}\right) \leq p_{2}$ such that $\left[p_{1} ; p_{2}\right] \subset\left(p_{1}^{0} ; p_{2}^{0}\right)$, the trajectory of the closed system starting from an initial point $x(0)=x_{0} \in Q$ ends at the point $x(T)=0$ at a finite time $T=T\left(x_{0}, p_{1}, p_{2}\right)$ under the estimate $\Theta\left(x_{0}\right) / \gamma_{2} \leq T\left(x_{0}, p_{1}, p_{2}\right) \leq \Theta\left(x_{0}\right) / \gamma_{1}$.

Furthermore we analyze the envelope for one-parametric family (2) at $\Theta=1$ for the system (1) with $p\left(t, x_{1}, x_{2}\right)=0$. It is close to the curve that describes all points from which we may steer to the origin due to the Pontryagin maximum principle for the time $t=1$.
[1] Choque Rivero A. E., Korobov V. I., Skoryk V. A. The controllability function as the time of motion 1.// Jour. Math. Phys. Anal. Geom. - 2004. - 11(2). - pp. 208-225.

