On the integration of nonlinear differential equation

Olena Oliinyk, Perejaslav-Khmelnitski, Ukraine
The Lax system of this form is studied in this paper

$$
\left\{\begin{array}{l}
{[a(x), \gamma(x)]=0, \quad x \in[0, l]} \tag{1}\\
\gamma^{\prime}(x)=i\left[a(x), \sigma_{2}\right], \quad x \in[0, l] \\
\gamma(0)=\gamma^{+}
\end{array}\right.
$$

where $a(x)$ - spectral matrix measure, $\gamma(x), \sigma_{2}, \gamma^{+}-$self-conjugate $n \times n$ matrices, and

$$
a(x) \geqslant 0, \quad \operatorname{tr} a(x) \equiv 1, \quad x \in[0, l]
$$

The solution of this system $\gamma(x)$ is used in construction of triangular models of commutative systems of operators [1].

Proposition 1. Let $\sigma_{2}=\operatorname{diag}\left(b_{1}, \ldots, b_{n}\right), \quad \gamma^{+}=\alpha_{1} \sigma_{2}+\alpha_{0} I+i C$, where $\alpha_{1}, \alpha_{0} \in \mathbb{R}$, matrix $C=\left(c_{j k}\right)_{j, k=1}^{n}=-C^{*}$ and $c_{j j}=0, j \in\{1, \ldots, n\}$.

Let further $\kappa_{0}, \kappa_{1}, \kappa_{2} \in L^{1}[0, l]$ - are real-valued functions. Then pair $\{a(\cdot), \gamma(\cdot)\}$, where $a(x)=\kappa_{2}(x) \gamma(x)^{2}+\kappa_{1}(x) \gamma(x)+\kappa_{0}(x), x \in[0, l]$, and $\gamma(\cdot)=\left(\gamma_{j k}(\cdot)\right)_{j, k=1}^{n}$, is the solution of the (1) if and only if $x \in[0, l]$ the following equations are completed

$$
\begin{aligned}
\gamma_{j j}(x) & =\gamma_{j j}^{+}, \quad j \in\{1, \ldots, n\} \\
\gamma_{j k}(x) & =i e^{i\left(b_{j}-b_{k}\right)\left(K_{1}(x)+\left(\gamma_{j j}^{+}+\gamma_{k k}^{+}\right) K_{2}(x)\right)} y_{j k}(x), \quad j \neq k
\end{aligned}
$$

where

$$
K_{j}(x):=\int_{0}^{x} \kappa_{j}(t) d t, \quad j \in\{1,2\}
$$

and the functions $y_{j k}(\cdot), j \neq k$, satisfy the system

$$
\left\{\begin{array}{l}
y_{j k}^{\prime}(x)=\left(b_{k}-b_{j}\right) \kappa_{2}(x) \sum_{s=1, s \neq j, k}^{n} y_{j s}(x) y_{s k}(x), \quad x \in[0, l], \quad j \neq k \tag{2}\\
y_{k j}(x)=\overline{-y_{j k}(x)}, \quad x \in[0, l], \quad j \neq k \\
y_{j k}(0)=c_{j k}, \quad j \neq k
\end{array}\right.
$$

At that, if $c_{j k} \in \mathbb{R}, j \neq k$, then any solution of the system (2) is real-valued.
[1] Zolotarev V. A. Analytical methods of spectral represantations of non-selfadjoint and non-unitary operators. - Kharkov: KhNU, 2003. - 342 pp. (Russian).
[2] Zolotarev V. A. Functional models of commutative systems of linear operators and de Branges spase on the Riemannian surface.//Matematicheskiy sbornik, - 2009. Vol. 200. - 3. - Pp. 31-48. (Russian).

