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Abstract

We consider linear systems in the general form

ẋ = A x+ Bu,

where the state x(t) and the control u(t) take values in Hilbert spaces X
and U . A is a linear operator, infinitesimal generator of a C0-semigroup
S(t), B is linear bounded operator.

By exact (null) controllability we mean controllability from any state to
any state (or zero state). By complete stabilizability we mean exponential
stabilizability with arbitrary decay rate or, sometimes pole assignment, by
linear state feedback.

It is well known that in an finite dimensional setting exact controllability
(said complete controllability) is a necessary and sufficient condition for
complete stabilizability or more precisely arbitrary pole assignment. The
situation is more complicated in infinite dimensional spaces.

We recall some classical results concerning the relation between exact
controllability and complete stabilizability.

The first important result in this context was given by Slemrod: if S(t) is
a group, exact controllability implies complete stabilizability. The converse,
for a group, was proved by Zabczyk. The result was generalized and precized
by several authors for the case of a bounded operator A , for the case of a
semigroup S(t) (not a group) and for some classes of systems, governed by
partial differential equations or functional-differential equations.

We discuss more precisely the relations between exact null controllability
and complete stabilizability. In general, for linear systems in Hilbert spaces,
exact null controllability implies complete stabilizability, but the converse is
not true. We give more recent results on functional-differential systems of
neutral type.
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1 Introduction

The well known relation between complete controllability and pole assignment
may be formulated in the following form.

Theorem 1.1. [7] The system

ẋ = Ax+Bu (1)

is completely controllable, i.e. rank[B AB · · ·An−1B] = n, if and only if the
system is completely stabilizable, i.e. for all λ1, . . . , λn ∈ C, there exists F such
that the spectrum of the closed loop system verifies:

σ(A+BF ) = {λ1, . . . , λn},

i.e. the problem of pole assignment by linear feedback is solvable.

Another formulation of the same statment is that all the poles are controllable
(Hautus criteria):

∀λ ∈ σ(A), rank[λI −A B] = n

Our purpose is to consider the same problem in infinite dimensional Hilbert
or Banach spaces. As the spectrum is more complicated and the behavior of
the system is not completely determinated by the spectrum, solutions of such
problem, when there exists some solutions, is not so simple. We will give a short
review of different results and consider the special case of neutral type systems.

2 Exact controllability gives complete stabilizability

2.1 The case of bounded control operator B

Consider the system
ẋ = A x+ Bu (2)

in Hilbert spaces X and U , where the operator A is the infinitesimal generator
of a group eA t, B is a bounded operator from U to X.

Theorem 2.1. The condition

∃δ > 0, ∀x ∈ X :

∫ T

0
‖B∗e−A ∗τx‖2 dτ ≥ δ‖x‖2 (EC)

implies complete stabilizability [6]:

∀ω > 0, ∃F ∈ L (X,U), ‖e(A +BF )t‖ ≤Mωe−ωt, Mω ≥ 1, (CS)
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with a linear bounded feedback F given by F = −B∗K−1
ω , where

Kω =

∫ T

0
e−2ωte−A τBB∗e−A ∗τ dτ.

This operator Kω is, in fact, the gramian of the system

ẋ = A x+ ωx+ Bu

which the group is eωteA t.
In fact, the condition (EC) is the condition of exact controllability in the case

of a group, and corresponds to the Kalman integral criterion:

K0 =

∫ T

0
e−A τBB∗e−A ∗τ dτ

is bounded invertible. The proof follows Lyapunov 2d method. We can formulate
this result as follows.

Theorem 2.2. The system (2), where A is the infinitesimal generator of a group,
then exact controllability (EC) implies complete stabilizability (CS).

2.2 The case of unbouned B

Following Slemrod and using some results by Lions, Komornik [2] proved an
analogous result for the case when B is unbounded. This was applied to system
governed by PDE with boundary control.

Shortly, with some conditions on the operator B, complete stabilizability is
obtained from exact controllability and the feedback is

F = −JB∗K−1
ω , Kω =

∫ T

0
e−2ωte−A τBJB∗e−A ∗τ dτ,

where J is the canonical Riesz isomorphism.

2.3 Application

This allow to obtain the complete stabilization of systems like

ẅ(t, ξ)−∇w(t, ξ) = 0, (t, ξ) ∈ R+ × Ω

w(0, ξ) = f(ξ), ẇ(0, ξ) = g(ξ), ξ ∈ Ω

w(t, ξ) = u(t, ξ) ξ ∈ ∂Ω.
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The boundary control is given by the formula

u(t, ξ) = Fw(t, ξ) = −JB∗K−1
ω (w(t, ξ), ẇ(t, ξ))

defined in the space H−1(Ω)× L2(Ω):

u(t, ξ) = ∂ν(Pw(t, ξ) +Qẇ(t, ξ)),

where P and Q are linear and bounded.

2.4 The case of a semigroup

In the general case of a semigroup, we have the following general implication:

Theorem 2.3. For the system (2), with bounded operator B, exact controllability
to zero implies complete stabilizability by bounded feedback F .

This is a consequence of a the following result contained implicitly in a paper
by Datko (1972) (see, for example [9]).

Theorem 2.4. Null exactly controllable systems are exponentially stabilizable.

This and the following remark give Theorem 2.3.

Remark 2.5. Controllability of the system (2) is equivallent to controllability of
the shifted system:

ẋ = A x+ ωx+ Bu.

3 Complete stabilizability implies exact (null) con-
trollability

3.1 In Banach space, bounded case

Consider the system
ẋ = Ax+Bu, (3)

where operators A and B are bounded, in Banach spaces U,X. This means that
it is not the case for PDE or functional-differential equations (delay equations).
Anyway, it is of historical and theoretical interest.

An important result was obtained in [5].

Theorem 3.1 (Sklyar, 1982). The system (3) with bounded operators is com-
pletely stabilizable if and only if the block operator [B AB · · · AkB] is right
invertible for some k:

∃k ∈ N, ∃Pi ∈ L (U,X) BP0 +ABP1 + · · ·+AkBPk = I. (4)

4



If the spaces X,U are Banach spaces, not isomorphic to Hilbert spaces, the
condition (4) is more that exact controllability, it is equivalent to the following
two conditions:

1. Im [B AB · · · AkB] = X, i.e. exact controllability according to the result
by Korobov and Rabah [3],

2. Ker [B AB · · · AkB] is complemented.

In Banach spaces there is exactly controllable system, generated by a group,
which are not completely stabilizable.

The situation is different in Hilbert spaces: every closed subspace can be
complemented. And we have the following range inclusion result.

Theorem 3.2 (Douglas 1966). Let C and D be linear bounded operator in Hilbert
spaces. The following 2 conditions are equivalent:

1. ImC ⊂ ImD,

2. There is a linear operator bounded E such that C = DE.

In general, it is not true in Banach spaces.

3.2 The bounded case: pole assignment in Hilbert spaces

Important result which may be interesting, at least in operator theory.

In Hilbert spaces, exact controllability is equivalent to complete stabilizability,
but more precisely we have a pole assignment result.

Theorem 3.3 (Eckstein, 1981 [1]). The system (3) is exactly controllable if and
only if for every nonempty compact set Λ ⊂ C, there is a bounded linear feedback
F , such that

σ(A+BF ) = Λ.

The proof uses explicitly the Hilbert space structure, in particular the fact
that the subspace Ker[B AB · · · AkB] is complemented.

3.3 Unbounded case in Hilbert spaces, I

We return to the system (2):

ẋ = A x+ Bu, (2)

with unbounded operator A and bounded operator B.
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Theorem 3.4 (Megan, Zabczyk, 1976 [8]). If eA t is a group and the system (2)
is completely stabilizable, then it is exactly controllable.

This result was extended to the case of surjective operators eA t, t ≥ 0 by
Rabah & Karrakchou (1997) and Zeng & Xie & Guo (2013).

Then we can summarize as:

Theorem 3.5 (All). The system (2) exactly controllable with a bounded operator
B if and only if

1. eA t are surjective for t ≥ 0,

2. The system is completely stabilizable.

3.4 Unbounded case in Hilbert spaces, II

We consider the same system (2) with possible unbounded B and F , they are
supposed to be admissible in a certain sense:

B bounded from U to the space X−1 which is the completion of X with the
norm ‖(λI −A)−1x‖.

Theorem 3.6 ([4]). If system (2) with admissible operator B is exactly null
controllable in X−1, then it is completely stabilizable by an admissible feedback
and then by a bounded feedback F .

The converse is not true. We have different situations.

3.5 Example 1

In the space L2(0,+∞), consider the semigroup

S(t)f(ξ) = e−
t2

2
−ξtf(ξ + t), t ≥ 0, ξ ≥ 0.

It is not difficult to see that for this semigroup

∀ω > 0, ∃Mω ≥ 1, ‖S(t)‖ ≤Mωe−ωt.

We have σ(S(t)) = {0} and then σ(A ) = ∅.

Trivial that, for some f 6= 0 we have S(t)f 6= 0 for any t ≥ 0.

The system is completely stabilizable (B = 0) but not controllable.
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3.6 Example 2

In the space L2(0, 1), consider the semigroup

S(t)f(ξ) =

{
f(ξ + t) 0 ≤ t+ ξ ≤ 1,

0 t+ ξ > 1.

It is not difficult to see that for this semigroup

∀ω > 0, ∃Mω ≥ 1, ‖S(t)‖ ≤Mωe−ωt.

We have σ(S(t)) = {0} and then σ(A ) = ∅.

For any initial function f ∈ L2(0, 1), we have S(t)f(x) = 0 for t > 2. This
means that S(t) = 0, for all t > 2.

Then, for any control operator B, the system is exactly null controllable at
time T > 2 with the trivial control u = 0.

4 The case of neutral type systems

4.1 Neutral type systems

We consider some large class of neutral type systems

ż(t) = A−1ż(t− 1) +

∫ 0

−1
A2(θ)ż(t+ θ)dθ +

∫ 0

−1
A3(θ)z(t+ θ)dθ +Bu, (5)

where z(t) takes values in Rn and which can be written as

ẋ = A x+ Bu,

with finite dimensional and bounded B.

The charasteristic matrix is noted by

∆A (λ) = λI −A−1e
−λ − λ

∫ 0

−1
A2(θ)e

sθdθ +

∫ 0

−1
A3(θ))e

sθdθ.

The behavior of at infinity are described by the spectrum:

σ(A ) = {λ : det ∆A (λ) = 0}.
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4.2 Complete stabilizability

It is characterized by two conditions: one on the spectrum σ(A ) , the second on
the neutral term (here A−1).

Theorem 4.1. The system (5) is completely stabilizable if and only if

1. For all λ ∈ C, rank
[
∆A (λ) B

]
= n,

2. For all µ ∈ C, µ 6= 0, rank
[
µI −A−1 B

]
= n.

It is important to check the meaning of the second condition:

The spectrum of the operator A is close to some vertical axes defined by the
spectrum of the neutral term, the matrix A−1. These axes must be moved by the
feedback, then the corresponding values µ have to be controllable.

A large part of the spectrum of A may be obtained from the non zero spec-
trum of the matrix A−1:

λ = log |µ|+ i(argµ+ 2kπ) + o(1/|k|), k ∈ Z

For k large, the circles are centered at log µ and are decreasing.

Figure 1: Spectrum of A, µ ∈ σ(A−1)
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4.3 Complete stabilizability and exact controllability

Theorem 4.2. If A is the infinitesimal generator of a group or, equivalently, if
the matrix A−1 is not singular, 0 /∈ σ(A−1), then exact controllability is equivalent
to complete stabilizability.

In fact, we have some result about pole assignment. Exact controllable im-
plies that all the vertical axes can be moved, and in the circles, all the pole are
controllable (may be arbitrary moved in the circles).

Theorem 4.3. Exact controllability to zero implies complete stabilizability. The
converse is proved in some particular cases (not distributed delays).

In the case of our general system (5), the question is still open.

5 Conclusion

We vive a short review of the relations between exact controllability and pole
assignment (complete stabilizability). There is lot of papers concerning different
classes of systems, in particular, governed by PDE. This paper gives our point to
view in the questions, based on results close to ours. Several questions are still
open concerning the general abstract case or some general particular classes.
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