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Nonlocal nonlinear Schrodinger equation (NNLS)

We consider the “step-like” Cauchy problem
iqi(7,t) + qee(z,t) + 2¢% (2, t)q(—2,t) =0, —oc0 <z <o00,t>0
q(l’,O) = QO('T)’ —00 < T < 00,

where ¢o(z) — 0 as ¢ — —o0 and go(z) = A as x — 400 with
some A > 0, with boundary conditions (for all £ > 0)

~Jo(1), T — —00
a@t) = {A—i— o(l), z— o0

Recall the classical (local) NLS:

. 2 _
iqe(, 1) + Gaa (2, 1) + 297 (2, £)q(2, 1) = 0.
One can consider more general boundary conditions (for both NLS and NNLS)
(2.1) = o(1), T — —00
At = Ae?Brrdivt 4 61y = 00; A>0,B,weR
but notice that the relationships amongst A, B, and w are different for NLS

and NNLS: for NLS, w = A?/2 — B?; for NNLS, w = —B2.
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Large-t asymptotics for local NLS with step-like ini.

—2iBx

In the case qo(z) — Ae as £ — 400, qo(z) > 0 z — —oc:
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Three sectors in the (z,t) half-plane, where g(z,t) behaves differently for large
t, depending on the magnitude of £ = x/4t.
@ ¢ < —B: slowly decaying (t~1/?) self-similar wave, as in the case of zero
y ying
background 1 L '
q(z,t) = W p(—{)e4l§ t+2ip” (&) log t+id(—¢) + O(til)
Q@ B < &< —B+ AV2: oscillations governed by modulated elliptic wave
@ ¢> —B+ AV?2: plane wave
q(flj,t) — AeZi(wthzfqﬁ(&)) + O(t71/2)
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Inverse scattering transform method, |

Main goal: the large time analysis of the Cauchy problem for NNLS.
NNLS is an integrable nonlinear equation: it is the compatibility
condition for two linear (matrix) equations (Lax pair):

®, + ikos® = U(z,t)®
Oy + 2ik203® = V (2, t, k)P

where o3 = (§ ), ®(x,t, k) is 2 x 2 matrix, k € C is the spectral
parameter,

Uz, t) = (_q(fx,t) q(%’ ”) ,V(z,t, k) = 2kU (z,t) + @ FA) ,

A =1iq(z,t)g(—z,t), B =1igz(x,t), C =i(q(—x,t))a.
General scheme of the Inverse Scattering Transform method:
@ ¢(z,0) — s(0,k): direct scattering problem;
e 5(0,k) — s(t,k): (linear) evolution of scattering data;
@ s(t,k) — q(z,t): inverse scattering problem: can be treated
as a Riemann—Hilbert problem.
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Inverse scattering transform method, Il

O, +ikos® =U(z,t)P

®; + 2ik203P = V(x,t, k)P
Direct problem: Determine two matrix solutions ®;(x,¢, k),
j = 1,2 of the Lax pair equations imposing boundary conds. at
+oo (Jost solutions):

éj(:pvtk) ~ Nj(k’)e_(ikm+2ik2t)‘73’ T — (_1)]‘-1—100’
A
where Nj(k) = L 5% and Na(k) = i 0 .
01 sk L

e N;(k) have singularities of the first order at £ = 0.
Being solutions of two ODEs, ®;(z,t,k), j = 1,2 are related by

scattering relation:
Dy (z,t, k) = Oo(x,t,k)S(k), k€ R\ {0}.

Particularly, S(k) = ®5'(x,0, k)®;(x,0, k) and thus is uniquely
determined by ini. conds. ¢(z,0).
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Properties of scattering matrix

Dy (z,t, k) = Po(x,t,k)S(k), k€ R\ {0}.
e Symmetry: from
A®y(—xz,t, —k)A™! = By(x,t, k), ke R\ {0},

where A = (9}), it follows that AS(—k)A~' = S~!(k) and
thus

st = () 2) keryon

where a;(k) and ag(k) are not related (important difference
w.r.t. NLS).

ay (k) is analytic for k € C* and continuous in C* \ {0};
as(k) is analytic for k € C~ and continuous in C—.

Q@ a;(k)=1+0(3). =12 bk)=0(3), k— oc.

© ai(—k)=ai(k), k€ CT\{0}; as(—k)=as(k), ke C~.

O ai(k)as(k) + b(k)b(—k) = 1, k € R\ {0}.
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Inverse scattering transform method, Il

®;(x,t,k) can be determined via integral (Volterra) equations for
Uj(x,t, k) == ®;(x,t, k)e*e+2k*09s - From these integral
equations one deduces the analytic (in k) and asymptotic (as

k — oo and as k — 0) properties of U:

as k — oo:

o ¥ tk) = (3) + O, 0wt = (7) + 00, ke e,

o U (x t k)= < + Ok, UiV (@, t, k) = (é) +0(k™), keC,

as k — 0:
o i) — i (1)) + o, v = % (1)) + o)
0w =2 (Z00) o, we = -1 (B0 o)
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Generic and non-generic cases

As k — 0, the spectral functions a1 (k) and b(k) behave as

a1 (k) = Af;(”) +0 (%) bk = A%O) + o).

Thus we have two qualitatively different cases: (i) generic, with
a>(0) # 0 and (ii) non-generic, with a2(0) = 0. The construction
of the Riemann—Hilbert problem (the main tool for the inverse
problem part of the IST method) is different in these cases.

“Pure step” initial data: ¢(x,0) =0 for z < 0 and ¢(z,0) = A for
x > 0. In this case,

ar(k) —b(—k) 14+ A2 A
sw= (3w ) = ()
Since a2(0) = 1, “pure step” is in the generic case. Moreover, a
“small perturbation” of the “pure step” initial data is also generic,
with the following properties of zeros of spectral functions:
(i) a1(k) has a single, simple zero in C* (at some k = ik;);
(i) as(k) has no zeros in C~.
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Generic case: the master Riemann—Hilbert problem, |

Define piecewise meromorphic matrix function M (x,t, k) using the
Jost solutions:

T (2K
. V) 9O (01, k) ), ke CF\ {0},
(% ) )— \I/(l) \I/(12)(x,t,k) B
D) ($’t’k)’T(k) ,kG(C .

On the other hand, M can be characterized as solution of the
Riemann—Hilbert problem with data uniquely determined by the ini.
conds. ¢(z,0) in terms of the associated spectral functions:
e Jump condition: My (x,t, k) = M_(z,t,k)J(x,t, k),
k€ R\ {0}, with the jump matrix

14 rl(k:)rg(k) T2(k)e—2ikac—4ik2t
J(ZL‘, t? k) = (rl(k)62ikaj+4ik2t 1 ’

where r1(k) = —abl(&)) and (k) = 72(2_(15))'

e Normalization condition: M (z,t,k) — I as k — oc.
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Generic case: the master Riemann—Hilbert problem, Il

@ Singularity conditions:
o Residue condition at k = iky (similar to local NLS):

Res MY (z,t, k) = " —2kyo—4ikTt 5 r(2)
kz?]?] (SE ) dl (lk1) € (

o Conditions at k = 0 (specific for nonlocal NLS):

M, — (@vl(w,t) vz(x,t)> (£+0(9) <k 0>,

.T,t,ilﬁ), "Yl‘ =1

Ty v2(@,t)  —vi(—w,t) 0 1L

k

. v (z,t)

vo=Z (TP 50 ) ow,
A —ﬂ(—l’,t) 327(07)

Let M (z,t, k) be the solution of the RH problem. Then ¢(z,t) can
be expressed in terms of M(x,t,k):

q(z,t) = 2i lim kMia(x,t, k),
k—o0
q(—x,t) = =20 lim kMo (z,t, k).
k—o0

Notice that it is sufficient to solve RHP for x > 0 only!
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Large time analysis. Triangular factorizations, |

The basic tool of the large time analysis of the RH problem is the
nonlinear steepest descent method (Deift and Zhou, 1993). The
first step is the triangular factorizations of the jump matrix, in
order to arrive at a “deformed” RHP with jump decaying (as

t — o0) to I:

1 0 1 ) 0 roe—2it0
J(ﬁ, t, k‘) = <r162it9 1) < +(; 1 1 > ((1) 1+§17‘2
1+rire 1+rire
- 1 roe 20 1 0
o\ 1 re2it? 1)

0(¢, k) = k¢ + 2K2, € = %
Due to the sign of Reif, use the lower/upper factorization for
k < —¢ and the upper/lower factorization for k > —¢.

where
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Large time analysis. Triangular factorizations, Il

In order to get rid of the diagonal factor, determine §(&, k) as the
solution of the scalar RHP

{ 64 (&, k) =0-(§, k)1 +ri(k)ra(k)), k€ (—o0;—=E)
(& k) =1, k— oo

o 1+ ri(k)ra(k) is complex-valued (real, for local NLS).
e We assume that f:fo darg(l+ri(Q)r2(¢)) € (—m,m).
The solution of this scalar RHP is given by

5(6. ) = exp {% /:é In(1 +C7”1fg2r2(§)) d(j}

Determine M := ]\/1(561 ). Then M satisfies the RHP with jump

1 0\ (1 r®LEr o
nSZER) aup g ) | O k<=t

= T (R)r2 (k)

1 7o(k)o2(E, k)e 20 1 0
(o B ) <r1(k)5—2(g,k;)e2“9 1) k>t
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Large time analysis. Deformed RHP

The next step is to multiply M by triangular factors above and to
d~eform the contour to the cross I' centered at k = —¢; in this way,
M(x,t, k) ~ M(x, t k) satisfying the RHP:
o My(x,t k)= M_(z,t,k)J(z t k) keTl.
o M(z,t,k) = I, k— oo.

o Res MW (.t k) = 5 iibregrye 2 MM (a, b, iky).
° E{_egM( V(a, t, k) = 2280 N (5 ¢, 0).

Since J(2,t, k) — I as t — oo for all k # —¢, and we consider
x> 0s.t. x— oo when t — oo, a rough asymptotics follows
(determined by the last res. cond.) for any £ = x /4t > 0 fixed:

q(z,t) = A(52(§,0) +o(1),z > 0, q(z,t) = o(1),z < 0,

where 02(¢,0) = exp {% J7E 4 Ora(0) dc}.
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Large time analysis. Refined asymptotics

In order to refine the asymptotics: rescale the RHP “locally”, near
k = —&; this leads to a model RHP with a constant jump, that can
be solved explicitly, in terms of the parabolic cylinder functions.
The resulting asymptotics is as follows (for £ = x /4t > 0 fixed):

q(:l?,t) _ t*%*lm 1/(£)a1(5)64it§2—iReu(§) lnt(l + 0(1))’ T < O7

q(x,t) _ A52(£,0) + t7%+hn 1/(7§)a2(€)€4it§27iRc v(—=¢§€) lnt(l + 0(1))

_1_

4473 Im1/(7§)a3(§)6—4it52+iReu(—&) lnt(l —|—O(1))7 x>0,

where v(&) = = In |1 + 1 (&ra (€] — o= ffw darg(1l+ri(¢)r2(Q)).

).

D=

@ Recall that we assume that Imv(¢) € (-3,
e Uniform for [£| > C, for any C' > 0.
@ Connect the asymptotics for £ > 0 and £ < 0: open problem.
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One-soliton solution

Let b(k) = 0. Then
A
—Ax—iA%t

QSOl($)t) =
1 —me

with any =1 s.t. |y1] = 1 is the solution (kink) of the NNLS
:C,t)(j(*.’ﬂ,t) = 0.

iQt(I‘,t) + %:x(%t) + 2¢q (
In this (non-generic) case, k1 is uniquely determined as k; %,
and the corresponding spectral functions are
k—i4 k
k)= 2 k)= .
a1 (k) o aa(k) P
@ The one-soliton solution is singular at (z,t) = (0,t,) with
2mn n ez
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Thank you!
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