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Nonlocal nonlinear Schr�odinger equation (NNLS)

We consider the �step-like� Cauchy problem{
iqt(x, t) + qxx(x, t) + 2q2(x, t)q̄(−x, t) = 0, −∞ < x <∞, t > 0
q(x, 0) = q0(x), −∞ < x <∞,

where q0(x)→ 0 as x→ −∞ and q0(x)→ A as x→ +∞ with
some A > 0, with boundary conditions (for all t ≥ 0)

q(x, t) =

{
o(1), x→ −∞
A+ o(1), x→∞

Recall the classical (local) NLS:

iqt(x, t) + qxx(x, t) + 2q2(x, t)q̄(x, t) = 0.

One can consider more general boundary conditions (for both NLS and NNLS)

q(x, t) =

{
o(1), x→ −∞
Ae2iBx+4iωt + o(1), x→∞; A > 0, B, ω ∈ R

but notice that the relationships amongst A, B, and ω are di�erent for NLS

and NNLS: for NLS, ω = A2/2−B2; for NNLS, ω = −B2.
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Large-t asymptotics for local NLS with step-like ini. conds.

In the case q0(x)→ Ae−2iBx as x→ +∞, q0(x)→ 0 x→ −∞:
5. Three sectors for Pb 1

5 / 31

Three sectors in the (x, t) half-plane, where q(x, t) behaves di�erently for large
t, depending on the magnitude of ξ = x/4t.
i ξ < −B: slowly decaying (t−1/2) self-similar wave, as in the case of zero

background

q(x, t) =
1√
t
ρ(−ξ)e4iξ

2t+2iρ2(−ξ) log t+iφ(−ξ) +O(t−1)

ii −B < ξ < −B +A
√

2: oscillations governed by modulated elliptic wave
iii ξ > −B +A

√
2: plane wave

q(x, t) = Ae2i(ωt−Bx−φ(ξ)) +O(t−1/2)
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Inverse scattering transform method, I

Main goal: the large time analysis of the Cauchy problem for NNLS.
NNLS is an integrable nonlinear equation: it is the compatibility
condition for two linear (matrix) equations (Lax pair):{

Φx + ikσ3Φ = U(x, t)Φ
Φt + 2ik2σ3Φ = V (x, t, k)Φ

where σ3 =
(

1 0
0 −1

)
, Φ(x, t, k) is 2× 2 matrix, k ∈ C is the spectral

parameter,

U(x, t) =

(
0 q(x, t)

−q̄(−x, t) 0

)
, V (x, t, k) = 2kU(x, t) +

(
Ã B̃

C̃ −Ã

)
,

Ã = iq(x, t)q̄(−x, t), B̃ = iqx(x, t), C̃ = i(q̄(−x, t))x.
General scheme of the Inverse Scattering Transform method:

q(x, 0)→ s(0, k): direct scattering problem;

s(0, k)→ s(t, k): (linear) evolution of scattering data;

s(t, k)→ q(x, t): inverse scattering problem: can be treated
as a Riemann�Hilbert problem.
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Inverse scattering transform method, II

{
Φx + ikσ3Φ = U(x, t)Φ
Φt + 2ik2σ3Φ = V (x, t, k)Φ

Direct problem: Determine two matrix solutions Φj(x, t, k),
j = 1, 2 of the Lax pair equations imposing boundary conds. at
±∞ (Jost solutions):

Φj(x, t, k) ∼ Nj(k)e−(ikx+2ik2t)σ3 , x→ (−1)j+1∞,

where N1(k) =

(
1 A

2ik
0 1

)
and N2(k) =

(
1 0
A

2ik 1

)
.

Nj(k) have singularities of the �rst order at k = 0.

Being solutions of two ODEs, Φj(x, t, k), j = 1, 2 are related by
scattering relation:

Φ1(x, t, k) = Φ2(x, t, k)S(k), k ∈ R \ {0}.

Particularly, S(k) = Φ−1
2 (x, 0, k)Φ1(x, 0, k) and thus is uniquely

determined by ini. conds. q(x, 0).
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Properties of scattering matrix

Φ1(x, t, k) = Φ2(x, t, k)S(k), k ∈ R \ {0}.

Symmetry: from

ΛΦ1(−x, t,−k̄)Λ−1 = Φ2(x, t, k), k ∈ R \ {0},
where Λ =

(
0 1
1 0

)
, it follows that ΛS(−k)Λ−1 = S−1(k) and

thus

S(k) =

(
a1(k) −b(−k)
b(k) a2(k)

)
, k ∈ R \ {0},

where a1(k) and a2(k) are not related (important di�erence
w.r.t. NLS).

1 a1(k) is analytic for k ∈ C+ and continuous in C+ \ {0};
a2(k) is analytic for k ∈ C− and continuous in C−.

2 aj(k) = 1 +O
(

1
k

)
, j = 1, 2; b(k) = O

(
1
k

)
, k →∞.

3 a1(−k̄) = a1(k), k ∈ C+ \ {0}; a2(−k̄) = a2(k), k ∈ C−.
4 a1(k)a2(k) + b(k)b(−k̄) = 1, k ∈ R \ {0}.
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Inverse scattering transform method, III

Φj(x, t, k) can be determined via integral (Volterra) equations for

Ψj(x, t, k) := Φj(x, t, k)e(ikx+2ik2t)σ3 . From these integral
equations one deduces the analytic (in k) and asymptotic (as
k →∞ and as k → 0) properties of Ψj :

as k →∞:

Ψ
(1)
1 (x, t, k) =

(
1
0

)
+O(k−1), Ψ

(2)
2 (x, t, k) =

(
0
1

)
+O(k−1), k ∈ C+,

Ψ
(2)
1 (x, t, k) =

(
0
1

)
+O(k−1),Ψ

(1)
2 (x, t, k) =

(
1
0

)
+O(k−1), k ∈ C−,

as k → 0:

Ψ
(1)
1 = 1

k

(
v1(x, t)
v2(x, t)

)
+O(1), Ψ

(2)
1 = 2i

A

(
v1(x, t)
v2(x, t)

)
+O(k),

Ψ
(1)
2 = − 2i

A

(
v2(−x, t)
v1(−x, t)

)
+O(k), Ψ

(2)
2 = − 1

k

(
v2(−x, t)
v1(−x, t)

)
+O(1).
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Generic and non-generic cases

As k → 0, the spectral functions a1(k) and b(k) behave as

a1(k) =
A2a2(0)

4k2
+O

(
1

k

)
, b(k) =

Aa2(0)

2ik
+O(1).

Thus we have two qualitatively di�erent cases: (i) generic, with
a2(0) 6= 0 and (ii) non-generic, with a2(0) = 0. The construction
of the Riemann�Hilbert problem (the main tool for the inverse
problem part of the IST method) is di�erent in these cases.

�Pure step� initial data: q(x, 0) = 0 for x < 0 and q(x, 0) = A for
x > 0. In this case,

S(k) ≡
(
a1(k) −b(−k)
b(k) a2(k)

)
=

(
1 + A2

4k2
− A

2ik
A
2ik

1

)
Since a2(0) = 1, �pure step� is in the generic case. Moreover, a
�small perturbation� of the �pure step� initial data is also generic,
with the following properties of zeros of spectral functions:

(i) a1(k) has a single, simple zero in C+ (at some k = ik1);

(ii) a2(k) has no zeros in C−.
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Generic case: the master Riemann�Hilbert problem, I

De�ne piecewise meromorphic matrix function M(x, t, k) using the
Jost solutions:

M(x, t, k) =


(

Ψ
(1)
1 (x,t,k)
a1(k) ,Ψ

(2)
2 (x, t, k)

)
, k ∈ C+ \ {0},(

Ψ
(1)
2 (x, t, k),

Ψ
(2)
1 (x,t,k)
a2(k)

)
, k ∈ C−.

On the other hand, M can be characterized as solution of the
Riemann�Hilbert problem with data uniquely determined by the ini.
conds. q(x, 0) in terms of the associated spectral functions:

Jump condition: M+(x, t, k) = M−(x, t, k)J(x, t, k),
k ∈ R \ {0}, with the jump matrix

J(x, t, k) =

(
1 + r1(k)r2(k) r2(k)e−2ikx−4ik2t

r1(k)e2ikx+4ik2t 1

)
,

where r1(k) = b(k)
a1(k) and r2(k) = b(−k)

a2(k) .

Normalization condition: M(x, t, k)→ I as k →∞.
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Generic case: the master Riemann�Hilbert problem, II

Singularity conditions:
Residue condition at k = ik1 (similar to local NLS):

Res
k=ik1

M (1)(x, t, k) =
γ1

ȧ1(ik1)
e−2k1x−4ik21tM (2)(x, t, ik1), |γ1| = 1;

Conditions at k = 0 (speci�c for nonlocal NLS):

M+ =

(
4

A2a2(0)
v1(x, t) −v2(−x, t)

4
A2a2(0)

v2(x, t) −v1(−x, t)

)
(I +O(k))

(
k 0
0 1

k

)
,

M− =
2i

A

(
−v2(−x, t) v1(x,t)

a2(0)

−v1(−x, t) v2(x,t)
a2(0)

)
+O(k).

Let M(x, t, k) be the solution of the RH problem. Then q(x, t) can
be expressed in terms of M(x, t, k):

q(x, t) = 2i lim
k→∞

kM12(x, t, k),

q(−x, t) = −2i lim
k→∞

kM21(x, t, k).

Notice that it is su�cient to solve RHP for x ≥ 0 only!
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Large time analysis. Triangular factorizations, I

The basic tool of the large time analysis of the RH problem is the
nonlinear steepest descent method (Deift and Zhou, 1993). The
�rst step is the triangular factorizations of the jump matrix, in
order to arrive at a �deformed� RHP with jump decaying (as
t→∞) to I:

J(x, t, k) =

(
1 0

r1e2itθ

1+r1r2
1

)(
1 + r1r2 0

0 1
1+r1r2

)(
1 r2e−2itθ

1+r1r2
0 1

)

=

(
1 r2e

−2itθ

0 1

)(
1 0

r1e
2itθ 1

)
,

where
θ(ξ, k) = 4kξ + 2k2, ξ =

x

4t
.

Due to the sign of Re iθ, use the lower/upper factorization for
k < −ξ and the upper/lower factorization for k > −ξ.
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Large time analysis. Triangular factorizations, II

In order to get rid of the diagonal factor, determine δ(ξ, k) as the
solution of the scalar RHP{

δ+(ξ, k) = δ−(ξ, k)(1 + r1(k)r2(k)), k ∈ (−∞;−ξ)
δ(ξ, k)→ 1, k →∞

• 1 + r1(k)r2(k) is complex-valued (real, for local NLS).

• We assume that
∫ −ξ
−∞ d arg(1 + r1(ζ)r2(ζ)) ∈ (−π, π).

The solution of this scalar RHP is given by

δ(ξ, k) = exp

{
1

2πi

∫ −ξ
−∞

ln(1 + r1(ζ)r2(ζ))

ζ − k dζ

}

Determine M̃ := M
(
δ−1 0

0 δ
). Then M̃ satis�es the RHP with jump

J̃ =



(
1 0

r1(k)δ
−2
− (ξ,k)

1+r1(k)r2(k)
e2itθ 1

)(
1

r2(k)δ
2
+(ξ,k)

1+r1(k)r2(k)
e−2itθ

0 1

)
, k < −ξ

(
1 r2(k)δ2(ξ, k)e−2itθ

0 1

)(
1 0

r1(k)δ−2(ξ, k)e2itθ 1

)
, k > −ξ
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Large time analysis. Deformed RHP

The next step is to multiply M̃ by triangular factors above and to
deform the contour to the cross Γ centered at k = −ξ; in this way,
M̃(x, t, k) M̂(x, t, k) satisfying the RHP:

M̂+(x, t, k) = M̂−(x, t, k)Ĵ(x, t, k), k ∈ Γ.

M̂(x, t, k)→ I, k →∞.

Res
k=ik1

M̂ (1)(x, t, k) = γ1
ȧ1(ik1)δ2(ξ,ik1)

e−2k1x−4ik21tM̂ (2)(x, t, ik1).

Res
k=0

M̂ (2)(x, t, k) = Aδ2(ξ,0)
2i M̂ (1)(x, t, 0).

Since Ĵ(x, t, k)→ I as t→∞ for all k 6= −ξ, and we consider
x > 0 s.t. x→∞ when t→∞, a rough asymptotics follows
(determined by the last res. cond.) for any ξ ≡ x/4t > 0 �xed:

q(x, t) = Aδ2(ξ, 0) + o(1), x > 0, q(x, t) = o(1), x < 0,

where δ2(ξ, 0) = exp
{

1
πi

∫ −ξ
−∞

ln(1+r1(ζ)r2(ζ))
ζ dζ

}
.
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Large time analysis. Re�ned asymptotics

In order to re�ne the asymptotics: rescale the RHP �locally�, near
k = −ξ; this leads to a model RHP with a constant jump, that can
be solved explicitly, in terms of the parabolic cylinder functions.
The resulting asymptotics is as follows (for ξ ≡ x/4t > 0 �xed):

q(x, t) = t−
1
2
−Im ν(ξ)α1(ξ)e4itξ

2−iRe ν(ξ) ln t(1 + o(1)), x < 0,

q(x, t) = Aδ2(ξ, 0) + t−
1
2
+Im ν(−ξ)α2(ξ)e4itξ

2−iRe ν(−ξ) ln t(1 + o(1))

+ t−
1
2
−Im ν(−ξ)α3(ξ)e−4itξ2+iRe ν(−ξ) ln t(1 + o(1)), x > 0,

where ν(ξ) = − 1
2π

ln |1 + r1(ξ)r2(ξ)| − i
2π

∫ ξ
−∞ d arg(1 + r1(ζ)r2(ζ)).

Recall that we assume that Im ν(ξ) ∈ (−1
2 ,

1
2).

Uniform for |ξ| ≥ C, for any C > 0.

Connect the asymptotics for ξ > 0 and ξ < 0: open problem.
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One-soliton solution

Let b(k) ≡ 0. Then

qsol(x, t) =
A

1− γ1e−Ax−iA
2t

with any γ1 s.t. |γ1| = 1 is the solution (kink) of the NNLS

iqt(x, t) + qxx(x, t) + 2q2(x, t)q̄(−x, t) = 0.

In this (non-generic) case, k1 is uniquely determined as k1 = A
2 ,

and the corresponding spectral functions are

a1(k) =
k − iA2
k

, a2(k) =
k

k − iA2
.

The one-soliton solution is singular at (x, t) = (0, tn) with
tn = arg γ1

A2 + 2πn
A2 , n ∈ Z.
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Thank you!
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