One optimal control problem for an unmanned aerial vehicle

Yuliia Sukhinina, Kharkiv, Ukraine
Svetlana Ignatovich, Kharkiv, Ukraine

The papers [1, 2] deal with one problem of minimizing the time for a kinematic model of unmanned aerial vehicle moving at a constant altitude. From a kinematic point of view, an UAV flying at a constant altitude is determined by standard Dubins equations [3]. Under additional speed constraints, the flight model of a drone is described by the following system of differential equations:

$$
\begin{equation*}
\dot{x}=\cos \theta, \quad \dot{y}=\sin \theta, \quad \dot{\theta}=u, \tag{1}
\end{equation*}
$$

with $(x, y, \theta) \in \mathbb{R}^{2} \times \mathbb{S}^{1}$ (where $(x, y) \in \mathbb{R}^{2}$ is UAV coordinates in the plane of constant height, θ is the angle of deviation from the course) and the control $u \in[-1,1]$. In $[1,2]$ this (and more general) time-optimal problem was considered with the following final conditions: the UAV steers to the circle of radius 1 centered at the origin and then moves along it clockwise. Due to such final conditions, choosing a new basis ($\widetilde{x}, \widetilde{y}, \theta)$ one can simplify the system and obtain the two-dimensional time-optimal control problem:

$$
\begin{gather*}
\left\{\begin{array}{l}
\dot{\tilde{x}}=1+u \cdot \widetilde{y} \\
\dot{\tilde{y}}=-u \cdot \widetilde{x}
\end{array}\right. \tag{2}\\
|u| \leq 1, \quad \widetilde{x}\left(t_{0}\right)=\widetilde{x}_{0}, \widetilde{y}\left(t_{0}\right)=\widetilde{y}_{0}, \widetilde{x}\left(t_{1}\right)=0, \widetilde{y}\left(t_{1}\right)=1 . \tag{3}
\end{gather*}
$$

The solution of this time-optimal control problem is rather complicated [1].
But it turns out that if the both choice of the direction of motion along the final circle is allowed (this corresponds to the time-optimal control problem (2) with two endpoints $(0,-1)$ and $(0,1))$, then the solution of the timeoptimal control problem is essentially simplified. In this paper, we describe the optimal synthesis and give examples of motion with various initial conditions.
[1] Maillot T., Boscain U., Gauthier J.-P., Serres U. Lyapunov and minimum-time path planning for drones // J. Dyn. Control Syst. - 2015. - V. 21. - P. 47-80.
[2] Lagache M.-A., Serres U., Andrieu V. Minimal time synthesis for a kinematic drone model // Math. Control and Related Fields. - 2017. - 7(2). - P. 259-288.
[3] Agrachev A. A., Sachkov Yu. L. Control Theory from the Geometric Viewpoint. - Springer-Verlag Berlin Heidelberg, 2004. - 412 p.

